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a b s t r a c t

Many graph invariants have been used for the construction of entropy-based measures to
characterize the structure of complex networks. Based on Shannon’s entropy, we study
graph entropies which are based on vertex degrees by using so-called information
functionals. When considering Shannon entropy-based graph measures, there has been
very little work to find their extremal values. The main contribution of this paper is to
prove some extremal values for the underlying graph entropy of certain families of graphs
and to find the connection between the graph entropy and the sum of degree powers.
Further, conjectures to determine extremal values of graph entropies are given.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Studies of the information content of graphs and networks have been initiated in the late fifties based on the seminal
work due to Shannon [70]. The concept of graph entropy [20,24] introduced by Rashevsky [67] and Trucco [76] has been used
to measure the structural complexity of graphs [11,21,22]. The entropy of a graph is an information-theoretic quantity that
has been introduced by Mowshowitz [58]. Here the complexity of a graph [25] is based on the well-known Shannon’s
entropy [18,20,70,58]. Importantly, Mowshowitz interpreted his graph entropy measure as the structural information con-
tent of a graph and demonstrated that this quantity satisfies important properties when using product graphs, etc., see, e.g.,
[58–61]. Note the Körner’s graph entropy [52] has been introduced from an information theory point of view and has not
been used to characterize graphs quantitatively. An extensive overview on graph entropy measures can be found in [24].
A statistical analysis of topological graph measures has been performed by Emmert-Streib and Dehmer [29].

Several graph invariants, such as the number of vertices, the vertex degree sequences, extended degree sequences (i.e.,
the second neighbor, third neighbor, etc.), edges, and connections, have been used for developing entropy-based measures
[20,24]. In this paper, we introduce a novel graph entropy, which is based on a new information functional by using degree
powers. Degree powers is one of the most important graph invariants, which has been proven useful in information theory,
social networks, network reliability and mathematical chemistry, see [9,10]. In view of the vast of amount of existing graph
entropy measures [11,20], there has been very little work to find their extremal values [23]. A reason for this might be the
fact that Shannon’s entropy represents a multivariate function and all probability values are not equal to zero when consid-
ering graph entropies. Inspired by Dehmer and Kraus [23], it turned out that determining minimal values of graph entropies
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is intricate because there is a lack of analytical methods to tackle this particular problem. Other related work is due to Shi
[71], who proved a lower bound of quantum decision tree complexity by using Shannon’s entropy. Dragomir and Goh [28]
obtained several general upper bounds for Shannon’s entropy by using Jensen’s inequality [43]. Finally, Dehmer and Kraus
[23] proved some extremal results for graph entropies which are based on information functionals.

The main contribution of the paper is to study novel properties of graph entropies which are based on an information
functional by using degree powers of graphs. In particular, we determine the extremal values for the underlying graph
entropy of certain families of graphs and find the connection between graph entropy and the sum of degree powers, which
is well-studied in graph theory and some related disciplines. Further, conjectures to determine extremal values of graph
entropies are proposed.

The paper is organized as follows. In Section 2, some concepts and notation in graph theory are introduced. In Section 3,
we introduce some results on the sum of degree powers. In Section 4, we state the definitions of graph entropies based on the
given information functional by using degree powers. In Sections 5 and 6, extremal properties of graph entropies have been
studied. Further, we express some conjectures to find extremal values of trees. We discuss some potential applications of
degree-based entropies in Section 7. The paper finishes with a summary and conclusion in Section 8.

2. Preliminaries

A graph G is an ordered pair of sets VðGÞ and EðGÞ such that the elements uv 2 EðGÞ are a sub-collection of the unordered
pairs of elements of VðGÞ. For convenience, we denote a graph by G ¼ ðV ; EÞ sometimes. The elements of VðGÞ are called ver-
tices and the elements of EðGÞ are called edges. If e ¼ uv is an edge, then we say vertices u and v are adjacent, and u; v are two
endpoints (or ends) of e. A loop is an edge whose two endpoints are the some one. Two edges are called parallel, if both edges
have the same endpoints. A simple graph is a graph containing no loops and parallel edges. If G is a graph with n vertices and
m edges, then we say the order of G is n and the size of G is m. A graph of order n is addressed as an n-vertex graph, and a graph
of order n and size m is addressed as an ðn;mÞ-graph. A graph F is called a subgraph of a graph G, if VðFÞ# VðGÞ and EðFÞ# EðGÞ,
denoted by F # G. In this paper, we only consider simple graphs.

Let G ¼ ðVðGÞ; EðGÞÞ and H ¼ ðVðHÞ; EðHÞÞ be two simple graphs. A graph isomorphism from G to H is a bijection
f : VðGÞ ! VðHÞ such that uv 2 EðGÞ if and only if f ðuÞf ðvÞ 2 EðHÞ. If there is a graph isomorphism from G to H, then G is said
to be isomorphic to H, denoted by G ffi H.

A graph is connected if, for every partition of its vertex set into two nonempty sets X and Y, there is an edge with one end
in X and one end in Y. Otherwise, the graph is disconnected. In other words, a graph is disconnected if its vertex set can be
partitioned into two nonempty subsets X and Y so that no edge has one end in X and one end in Y.

A path graph is a simple graph whose vertices can be arranged in a linear sequence in such a way that two vertices are
adjacent if they are consecutive in the sequence, and are nonadjacent otherwise. Likewise, a cycle graph on three or more
vertices is a simple graph whose vertices can be arranged in a cyclic sequence in such a way that two vertices are adjacent
if they are consecutive in the sequence, and are nonadjacent otherwise. Denote by Pn and Cn the path graph and the cycle
graph with n vertices, respectively.

A connected graph without any cycle is a tree. Actually, the path Pn is a tree of order n with exactly two pendent vertices.
The star of order n, denoted by Sn, is the tree with n� 1 pendent vertices. A simple connected graph is called unicyclic if it has
exactly one cycle. We use Sþn to denote the unicyclic graph obtained from the star Sn by adding to it an edge between two
pendent vertices of Sn. Observe that a tree and a unicyclic graph of order n have exactly n� 1 and n edges, respectively.
A bicyclic graph is a graph of order n with nþ 1 edges.

The length of a path is the number of its edges. For two vertices u and v, the distance between u and v in a graph G, denoted
by dGðu;vÞ, is the length of the shortest path connecting u and v. The diameter of a graph G is the greatest distance between
two vertices of G.

All vertices adjacent to vertex u are called neighbors of u. The neighborhood of u is the set of the neighbors of u. The number
of edges adjacent to vertex u is the degree of u, denoted by dðuÞ. Vertices of degrees 0 and 1 are said to be isolated and pendent
vertices, respectively. A pendent vertex is also referred to as a leaf of the underlying graph. A vertex of degree i is also
addressed as an i-degree vertex. The minimum and maximum degree of G is denoted by dðGÞ and DðGÞ, respectively. If G
has ai vertices of degree di (i ¼ 1;2; . . . ; t), where DðGÞ ¼ d1 > d2 > � � � > dt ¼ dðGÞ and

Pt
i¼1ai ¼ n, we define the degree

sequence of G as DðGÞ ¼ ½da1
1 ; d

a2
2 ; . . . ; dat

t �. If ai ¼ 1, we use di instead of dai
i for convenience.

In chemical graph theory, a chemical graph or molecular graph is a representation of the structural formula of a chemical
compound in terms of graph theory. Here, a graph corresponds to a chemical structural formula, in which a vertex and an
edge correspond to an atom and a chemical bond, respectively. Since carbon atoms are 4-valent, we obtain graphs in which
no vertex has degree greater than four. Analogously, a chemical tree is a tree T with maximum degree at most four. For a more
thorough introduction on chemical graphs, we refer to [12,77].

Let G be a graph of order n. The adjacency matrix of a graph G is the n� n matrix AðGÞ :¼ ðauv Þ, where auv is the number of
edges joining vertices u and v, each loop counting as two edges. If G is simple, then AðGÞ is a ð0;1Þ-matrix. The eigenvalues of G
is the eigenvalues of its adjacency matrix AðGÞ. All eigenvalues of G forms the spectrum of G, which is widely studied in alge-
braic graph theory. For this topic, we refer to [34].
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