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a b s t r a c t

This paper extends previous work on sorting networks (SNs) based on min/max circuits. In
particular, we have identified the complexity of both min/max-based sorting and merging
networks showing that, depending on design choice, the time complexity of this kind of SN
ranges from O(1) to O(log (n)) and spatial complexity from O(n2n) to O(n2), respectively.
Moreover, we show that both AT and AT2 metrics of the proposed SN are better than those
of Batcher’s SNs also for SNs with several hundreds of inputs.

In addition to these results we show how to design a fast digital, serial, pipelined sorting
network using FPGA technology. As expected, FPGA synthesis results confirm our theoret-
ical analysis.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Sorting algorithms are extensively studied in Computer Science [20,2,10] and their hardware implementations, known as
sorting networks (SNs), are very important in different applications, for instance, in high-energy physics experiments [12],
ATM switching [39,5], radio-astronomy [8,7] and parallel databases [13,9].

Usually, SNs are implemented using an appropriate interconnection of Comparison Elements (CEs) [20], which are two-
input two-output devices able to sort two elements.

Obviously, in the digital domain, the word size (i.e. the number of bits used to represent the elements) and the technology
used for realizing CEs affect implementation costs (i.e. the number of transistors or logic gates needed to implement the SN)
and also the maximum achievable speed.

To avoid technology dependent and implementation specific factors, SNs are compared in terms of two main metrics:
time (or depth) complexity (T) and spatial (or area) complexity (A), both expressed in terms of the number of inputs to sort,
n, using the big-O notation [20]. For instance, a spatial complexity A = O(n log2(n)) means that the implementation cost can
be upper-bounded by k � n log2(n) for some real constant k.

It is worth observing that due to the fact that the big-O notation hides constant factors, it follows that the complexity is
the same if, instead of the number of CEs, the number of gates or transistors or maximum/minimum circuits needed for the
implementation are considered.

The same observations can be made for time complexity, representing the maximum number of CEs (or gates or transis-
tors) that must be traversed from the generic input to the generic output of a SN.

Sometimes a combined metric, such as AT or AT2, is preferred for comparison purposes.
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One of the most cited works in this field is that of Batcher [3]. In his paper in 1948, Batcher proposed two SNs, named
respectively bitonic sorting and odd–even merging networks, which have area and time complexities of A = O(n log2(n))
and T = O(log2(n)), respectively.

For many years since Batcher’s work, researchers have been investigating the existence of faster SNs without success.
Although it has been proved that optimal SNs implemented with CEs have A = O(n log(n)) and T = O(log(n)) [19], today the

only known optimal SN is the AKS [26] and its refinements, mainly due to the work of Leighton [21], Paterson [30] and Chvá-
tal [6].

However, the big O notation can hide large constant factors and this is the case of AKS where the hidden constant in the
time complexity is nearly 6000 in [30] and nearly 2000 in [6].

That is the reason why the AKS network has, for a long time, been considered highly impractical [33,27].
The increasing number of transistors available in modern VLSI technology have made AKS feasible. For instance in [24] Lin

and Olariu presented a VLSI architecture that efficiently implements Leighton’s improvement of the AKS network (i.e. Col-
umnsort) showing that for small and moderate numbers of inputs (i.e. n 6 16), when the AT2 metric is considered, the pro-
posed architecture is superior to the existing designs.

Another implementation of the AKS algorithm was proposed in [25] where the authors showed how to implement an AKS
network in a multibutterfly network. However, as stated by the same authors, their algorithm is not practical. More recently,
Seiferas et al. [34] have simplified the description of the AKS algorithm but with no further reduction in complexity.

So, as also stated in recent papers, ‘‘the merge-sort networks of Batcher are still the best practical sorting networks’’ [22]. This
justifies why Batcher’s SNs are the most used SNs even when fast sorting circuits are required [14,11].

Moreover, it is worth mentioning that the area complexity of Batcher’s bitonic sorting networks has been further im-
proved and reduced to O(n log (n)) [18] (instead its time complexity still remains O(log2(n))).

Obviously, O(log(n)) time complexity with a low constant factor can be achieved at the cost of higher spatial complexity.

For instance, in [15] a class of SNs with O(log(n)) time complexity and O n2

logðnÞ

� �
spatial complexity was proposed.

Another example of very fast SNs is given in [32] where in 1996 a novel class of SNs with O(1) time complexity was pre-
sented. More precisely, in the first part of the paper the authors show how to sort n items using a two layer SN each layer
implemented by minimum or maximum circuits. This means that the time complexity of this solution is O(1) with an
approximated, but commonly used, cost model where the delay introduced by a min/max elementary block is not related
to the number of its inputs. The authors clearly showed through numerical examples that the solution presented was the
fastest in literature but were not able to evaluate its spatial complexity. In the second part of the paper, the authors intro-
duced min–max merging networks, consisting of two layers of minimum and maximum elementary blocks which are able to
sort two or more pre-ordered vectors. In particular, the authors showed that using more layers of mergering networks it is
possible to design large sorting networks with O(log(n)) time complexity at a substantially lower cost in comparison to the
previous solution. In these cases too, all results reported regarding spatial complexity were empirical and based on an over-
simplified analog hardware implementation.

Recently min–max networks have been rediscovered by Levi and Litman [16]. In particular they have shown that the
min–max model of computation outperforms the comparator model used to derive Batcher’s SNs [23] and that using
min–max networks it is possible to accelerate specific outputs of Batcher’s sorting networks [22]. However the overall time
complexity of the proposed SN remains the same as Batcher’s, i.e. O(log2(n)). Moreover, spatial complexity is not discussed.

Obviously in order to correctly compare Batcher’s SNs with min–max SNs, it is necessary to take spatial complexity into
consideration.

In this paper we finally derive the spatial complexities of both sorting and merging networks based on min–max circuits
originally proposed in [32].

In particular, we prove that when the number of elements to sort is below a few hundred and AT or AT2 metrics are con-
siderd, min–max SNs outperform Batcher’s SNs.

Finally, we show how to design a fast digital, serial, pipelined SN using FPGA technology. Synthesis results for FPGA con-
firm our theoretical analysis.

The paper is organized as follows: in Section 2 notation, main definitions and a brief summary of the theorems demon-
strated in [32] are presented; in Section 3 the complexity of sorting and merging networks is approached from an entirely
analytical point of view; in Section 4 the obtained analytical results are compared with empirical ones in [32]; in Section 5 an
FPGA-based implementation is illustrated and synthesis results are provided; in Section 6 some considerations regarding the
model are given. Lastly, the VHDL source codes used to obtain synthesis results are reported in the Appendix.

2. Notation and definitions

In this section, firstly we introduce the notation that will be used throughout the paper; afterwards, max/min based sort-
ing and merging networks are formally defined and related theorems, already presented in [32], will be summarized.

2.1. Notation

Here, we present a brief outline of the notations employed in the paper. More symbols will be introduced, when neces-
sary, in the related sections.
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