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a b s t r a c t

The connectivity of a graph is an important issue in graph theory, and is also one of the most
important factors in evaluating the reliability and fault tolerance of a network. It is known
that the augmented cube AQ n is maximally connected, i.e. ð2n� 1Þ-connected, for n P 4. By
the classic Menger’s Theorem, every pair of vertices in AQ n is connected by 2n� 1 vertex-dis-
joint paths for n P 4. A routing with parallel paths can speed up transfers of large amounts
of data and increase fault tolerance. Motivated by research on networks with faults, we
obtained the result that for any faulty vertex set F � VðAQ nÞ and jFj 6 2n� 7 for n P 4,
each pair of non-faulty vertices, denoted by u and v, in AQ n � F is connected by
minfdegf ðuÞ;degf ðvÞg vertex-disjoint fault-free paths, where degf ðuÞ and degf ðvÞ are the
degree of u and v in AQn � F, respectively. Moreover, we demonstrate that for any faulty
vertex set F � VðAQnÞ and jFj 6 4n� 9 for n P 4, there exists a large connected component
with at least 2n � jFj � 1 vertices in AQ n � F, which improves on the results of Ma et al.
(2008) who show this for n P 6.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Interconnection networks have been widely studied recently. The architecture of an interconnection network is usually
denoted as an undirected graph G. For the graph definition and notation we follow [2]. G ¼ ðV ; EÞ is a graph if V is a finite set
and E is a subset of fða; bÞjða; bÞ ða – bÞ is an unordered pair of Vg. We say that V is the vertex set and E is the edge set. The
interconnection network topology is usually represented by a graph G ¼ ðV ; EÞ, where vertices represent processors and
edges represent links between processors. The neighborhood of vertex v, denoted by NðvÞ, is fxjðv; xÞ 2 Eg. The degree of a
vertex v, denoted by degðvÞ, is the number of vertices in NðvÞ. A graph G is k-regular if degðvÞ ¼ k for every vertex v 2 V .
For the purpose of connecting hundreds or thousands of processing elements, many interconnection network topologies
have been proposed in the literature. Graph theory can be used to analyze network reliability, so we use the terminology
graphs and networks synonymously.

The reliability and fault tolerance of a network with respect to processor failures is directly related to the connectivity of the
corresponding graph. Connectivity is one of the important factors for evaluating the fault tolerance of a network [3,4,14]. The
connectivity of G, written jðGÞ, is defined as the minimum size of a vertex cut if G is not a complete graph, and
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jðGÞ ¼ jVðGÞj � 1 otherwise. Traditional connectivity only considers how many faulty vertices there can be before the net-
work fails. It is known that jðGÞ 6 dðGÞ, where dðGÞ is the minimum degree of G. For the most part, even if the number of
faulty vertices is higher than that specified by network connectivity standards, the network remains connected or at least
a large part of it remains connected. Many measures of fault tolerance of networks are related to the maximal size of the
connected components of networks with faulty vertices, so it is essential to estimate the maximally connected component
of the network with the faulty vertices [1]. Yang et al. [15–17] have proposed a way to determine the maximally connected
component of the n-dimensional hypercube.

A distributed system is useful because it offers the advantage of improved connectivity. Menger’s Theorem [10] shows
that if a network G is k-connected, every pair of vertices in G is connected by k vertex-disjoint (parallel) paths. Efficient rout-
ing can be achieved using vertex-disjoint paths, providing parallel routing and high fault tolerance, increasing the efficiency
of data transmission, and decreasing transmission time. Saad and Schultz [12] studied the n vertex-disjoint parallel paths of
an n-dimensional hypercube Q n. Day and Tripathi [7] discussed the n� 1 vertex-disjoint parallel paths of an n-dimensional
star graph Sn for any two vertices of Sn.

Many useful topologies have been proposed to balance performance and cost parameters. Among them, the binary hyper-
cube Q n [5,12] is one of the most popular topologies, and has been studied for parallel networks. Augmented cubes are deriv-
atives of the hypercubes with good geometric features that retain some favorable properties of the hypercubes, such as
vertex symmetry, maximum connectivity, best possible wide diameter, routing, and broadcasting procedures with linear
time complexity. The augmented cube of dimension n, denoted by AQn, is a Cayley graph, ð2n� 1Þ-regular, ð2n� 1Þ-con-
nected, and has diameter dn=2e [6]. In this paper, we demonstrate a tight result that for any faulty vertex set F � VðAQ nÞ
and jFj 6 2n� 7 for n P 4, each pair of non-faulty vertices u and v in AQn � F is connected by minfdegf ðuÞ;degf ðvÞg ver-
tex-disjoint fault-free paths, where degf ðuÞ and degf ðvÞ are the degree of u and v in AQn � F, respectively. In addition, we
consider the maximally connected component of the augmented cube with faulty vertices. In 2008, Ma et al. showed that
for n P 6, for any faulty vertex set F � VðAQnÞ and jFj 6 4n� 9, the maximally connected component of AQ n � F has at least
2n � jFj � 1 vertices. We improve this result by demonstrating it for n P 4.

In the next section, we give the definition of the augmented cube AQn for n P 1. Section 3 deals with the maximally con-
nected component of AQ n � F with jFj 6 4n� 9 for n P 4. Section 4 studies the vertex-disjoint fault-free paths in AQ n � F
with jFj 6 2n� 7 for n P 4.

2. The augmented cube AQ n

The definition of the n-dimensional augmented cube is stated as the following. Let n P 1 be a positive integer. The n-
dimensional augmented cube [6,8], denoted by AQ n, is a vertex transitive and ð2n� 1Þ-regular graph with 2n vertices. Each
vertex is labeled by an n-bit binary string and VðAQnÞ ¼ funun�1 . . . u1jui 2 f0;1gg. AQ1 is the complete graph K2 with vertex
set f0;1g and edge set fð0;1Þg. As for n P 2; AQn consists of (1) two copies of ðn� 1Þ-dimensional augmented cubes, de-
noted by AQ 0

n�1 and AQ1
n�1; and (2) 2n edges (two perfect matchings of AQn) between AQ0

n�1 and AQ 1
n�1. AQn can be written

as AQ 0
n�1}AQ1

n�1 for n P 2. VðAQ0
n�1Þ ¼ f0un�1un�2 . . . u1 j ui 2 f0;1gg and VðAQ 1

n�1Þ ¼ f1vn�1vn�2 . . . v1 j v i 2 f0;1gg. Vertex
u ¼ 0un�1un�2 . . . u1 of AQ0

n�1 is joined to vertex v ¼ 1vn�1vn�2 . . . v1 of AQ1
n�1 if and only if either.

(i) ui ¼ v i for 1 6 i 6 n� 1; in this case, ðu;vÞ is called a hypercube edge and we set v ¼ uh, or
(ii) ui ¼ �v i for 1 6 i 6 n� 1; in this case, ðu;vÞ is called a complement edge and we set v ¼ uc .

The augmented cubes AQ 1; AQ 2, and AQ3 are illustrated in Fig. 1. Let the hypercube edge set of AQn be Eh
n and the com-

plement edge set of AQn be Ec
n. Thus, Eh

n ¼ fðu;uhÞj u 2 VðAQ 0
n�1Þg and Ec

n ¼ fðu;ucÞj u 2 VðAQ 0
n�1Þg. Obviously, each of Eh

n and
Ec

n is a perfect matching between the vertices of AQ0
n�1 and AQ1

n�1. Then, both jEh
nj and jEc

nj are equal to 2n�1.
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Fig. 1. The augmented cubes AQ 1; AQ 2, and AQ3.
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