Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/ins

Edge fault tolerance of super edge connectivity for three families of interconnection networks

Dongye Wang, Mei Lu*

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

ARTICLE INFO

Article history: Received 24 December 2009 Received in revised form 2 August 2010 Accepted 7 November 2011 Available online 18 November 2011

Keywords: Edge fault tolerance of super edge connectivity Edge connectivity Super- λ Interconnection network

ABSTRACT

Let G = (V, E) be a connected graph. *G* is said to be super edge connected (or super- λ for short) if every minimum edge cut of *G* isolates one of the vertex of *G*. A graph *G* is called *m*-super- λ if for any edge set $S \subseteq E(G)$ with $|S| \leq m, G - S$ is still super- λ . The maximum cardinality of *m*-super- λ is called the edge fault tolerance of super edge connectivity of *G*. In this paper, we discuss the edge fault tolerance of super edge connectivity of three families of interconnection networks.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

We use Bondy and Murty [3] for terminology and notation not defined here and only consider finite simple undirected graphs. Let G = (V, E) be a connected graph. For $v \in V(G)$, the degree of v, written by d(v), is the number of edges incident with v. Let $\delta(G) = \min\{d(v)|v \in V(G)\}$ and it is called the *minimum degree* of G. For a subset S of V(G), G[S] is the subgraph of G induced by S. An edge subset $T \subseteq E(G)$ is an *edge cut* if G - T is disconnected. The *edge connectivity*, denoted by λ , is the minimum cardinality of the set of all edge cuts of G.

It is well known that the edge connectivity λ is an important measurement for the fault tolerance of networks. In general, the larger λ is, the more reliable a network is. Obviously, $\lambda \leq \delta(G)$. In [2], Bauer et al.*** defined the so-called super- λ graphs. A graph *G* is said to be *super edge-connected* (in short, *super-\lambda*) if every minimum edge cut is the set of edges incident with some vertex of *G*. There are much research on super- λ , the reader is referred to [5,11,13,16,18] and the references therein.

In [8,9], Esfahanian and Hakimi proposed the concept of restricted edge connectivity of graphs which generalized the concept of super- λ . Then Fábrega and Fiol [10] introduced the *k*-restricted edge connectivity of interconnection networks. Let *G* be a graph. An edge set $S \subset E$ is said to be a *k*-restricted edge cut if G - S is disconnected and there are no components whose cardinalities are smaller than *k* in G - S. The minimum cardinality of *k*-restricted edge cut of *G* is called *k*-restricted edge connectivity is another important parameter in measuring the reliability and fault tolerance of large interconnection networks. In particular, estimating the bound for $\lambda_k(G)$ is of great interest, and many results have been obtained in [1,6,12,17,19–26].

In [14], Hong and Meng defined another index to measure the reliability of networks.

* Corresponding author. E-mail addresses: wangdy04@mails.tsinghua.edu.cn (D. Wang), mlu@math.tsinghua.edu.cn (M. Lu).

0020-0255/\$ - see front matter \circledcirc 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.ins.2011.11.006

Definition 1.1 ([14]). A graph *G* is said to be *m*-super edge connected (*m*-super- λ for short) if G - S is super- λ for any $S \subseteq E(G)$ with $|S| \leq m$.

From the definition, we know that *G* is 0-super- λ is equivalent to that *G* is super- λ . Furthermore, if *G* is *a*-super- λ , then *G* is also *b*-super- λ , for any $0 \le b \le a$. So *m*-super- λ is a generalization of super- λ .

The edge fault tolerance of super edge connectivity of G is an integer m such that G is m-super- λ but not (m + 1)-super- λ , denoted by $S_{\lambda}(G)$.

In [14], Hong and Meng gave an upper and lower bound for $S_{\lambda}(G)$. Moreover, more refined bounds for $S_{\lambda}(G)$ of Cartesian product graphs, edge transitive graphs and regular graphs are given.

In this paper, we will give some bounds of $S_{\lambda}(G)$ for three families of interconnection networks.

Before proceeding, we introduce some notions which will be used in the discussions in the next sections. Let G = (V, E) be a graph. For two disjoint vertex sets $U_1, U_2 \subseteq V(G)$, we use $[U_1, U_2]_G$ to denote the edge set of G with one end in U_1 and the other end in U_2 . For any vertex set $A \subseteq V(G)$, denote $\omega_G(A) = |[A, \overline{A}]_G|$, where $\overline{A} = V(G) - A$ is the complement of A. The subscription G is omitted when the graph under consideration is obvious. Next we cite two lemmas which will be used in the following proofs.

Lemma 1.2 ([14]). A graph *G* is super- λ if and only if $\omega(A) > \delta(G)$ for any $A \subset V(G)$ with $2 \leq |A| \leq \lfloor \frac{|V(G)|}{2} \rfloor$ and $G[\overline{A}]$ and $G[\overline{A}]$ being connected.

Lemma 1.3 ([14]). Let G be a connected graph with minimum degree $\delta(G)$. Then $S_{\lambda}(G) \leq \delta(G) - 1$.

2. Three families of interconnection networks

The following three families of interconnection networks which we will discuss in the next sections were introduced in [4].

Fig. 1. Graph *G*(*G*₀, *G*₁; *M*).

Fig. 2. Graph $G(G_0, G_1, ..., G_{r-1}; \widetilde{M})$.

Download English Version:

https://daneshyari.com/en/article/393798

Download Persian Version:

https://daneshyari.com/article/393798

Daneshyari.com