
A comment on ‘‘An efficient common-multiplicand-multiplication
method to the Montgomery algorithm for speeding up exponentiation’’

Da-Zhi Sun a,b,⇑, Jin-Peng Huai b, Zhen-Fu Cao c

a School of Computer Science and Technology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, PR China
b School of Computer Science, Beihang University, Beijing 100083, PR China
c Department of Computer Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China

a r t i c l e i n f o

Article history:
Received 20 July 2010
Received in revised form 21 September 2012
Accepted 29 September 2012
Available online 9 October 2012

Keywords:
Modular arithmetic
Modular exponentiation
Single-precision multiplication
Computational efficiency
Public-key cryptography

a b s t r a c t

In 2009, Wu proposed a fast modular exponentiation algorithm and claimed that the pro-
posed algorithm on average saved about 38.9% and 26.68% of single-precision multiplica-
tions as compared to Dussé–Kaliski’s Montgomery algorithm and Ha–Moon’s Montgomery
algorithm, respectively. However, in this comment, we demonstrate that Wu’s algorithm
on average reduces the number of single-precision multiplications by at most 22.43%
and 6.91%, when respectively compared with Dussé–Kaliski’s version and Ha–Moon’s ver-
sion. That is, the computational efficiency of Wu’s algorithm is obviously overestimated.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

The modular exponentiation is the dominant part of the implementation costs in many prevailing public-key cryptosys-
tems. Therefore, Wu [6] proposed a fast modular exponentiation algorithm, of which the idea is to combine the common-
multiplicand-multiplication (CMM) Montgomery method [4], the folding exponent method [3,5], and the minimal-signed-
digit (MSD) recoding method [1]. According to Wu’s claim, the proposed algorithm on average saved about 38.9% and
26.68% of single-precision multiplications as compared to Dussé–Kaliski’s Montgomery algorithm [2] and Ha–Moon’s Mont-
gomery algorithm [4], respectively.

However, we demonstrate that Wu’s algorithm on average reduces the number of single-precision multiplications by at
most 22.43% and 6.91%, when respectively compared with Dussé–Kaliski’s version and Ha–Moon’s version. Our computa-
tional efficiency result is accurate, because all crucial operations in Wu’s algorithm are considered exactly.

2. Brief description of Wu’s method

For a self-contained discussion, we briefly review Wu’s algorithm and refer the readers to [6] for more details about it. To
compute the modular exponentiation ME(modN), Wu’s algorithm can be restated as follows:

Step 1. Divide the MSD representation (ek�1 � � � e1e0)MSD for the exponent E into three equal-length bit strings E1, E2, and E3,
i.e. E = E1kE2kE3, where k denotes the bit string concatenation.

0020-0255/$ - see front matter � 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.ins.2012.09.052

⇑ Corresponding author at: School of Computer Science and Technology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, PR China.
Tel./fax: +86 22 27406538.

E-mail addresses: sundazhi@tju.edu.cn, sundazhi1977@126.com (D.-Z. Sun).

Information Sciences 223 (2013) 331–334

Contents lists available at SciVerse ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins

http://dx.doi.org/10.1016/j.ins.2012.09.052
mailto:sundazhi@tju.edu.cn
mailto:sundazhi1977@126.com
http://dx.doi.org/10.1016/j.ins.2012.09.052
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins


Step 2. Compute

Ecom ¼ E1 AND E2 AND E3 ¼ e0
m � � � e0

1e0
0

� �
; ð1Þ

E01 ¼ E1 XOR Ecom ¼ e1
m � � � e1

1e1
0

� �
; ð2Þ

E02 ¼ E2 XOR Ecom ¼ e2
m � � � e2

1e2
0

� �
; ð3Þ

E03 ¼ E3 XOR Ecom ¼ e3
m � � � e3

1e3
0

� �
; ð4Þ

where m ¼ k
3

� �
� 1 and d e denotes the usual ceiling function. The definitions of the bitwise logical ‘‘AND’’ and ‘‘XOR’’ oper-

ators are presented in Table 1 of [6]. Next, let the bit strings Ecom½1� ¼ e0½1�
m � � � e0½1�

1 e0½1�
0

� �
and Ecom½�1� ¼ e0½�1�

m � � � e0½�1�
1 e0½�1�

0

� �
sep-

arately store all bits of 1 and all bits of �1 in the bit string Ecom. Similarly, let the bit strings E0i½1� ¼ ei½1�
m � � � ei½1�

1 ei½1�
0

� �
and

E0i½�1� ¼ ei½�1�
m � � � ei½�1�

1 ei½�1�
0

� �
separately store all bits of 1 and all bits of �1 in the corresponding bit strings E0i for i = 1, 2, 3.

Step 3. Use the so-called improved CMM–MSD Montgomery algorithm described in Section 3.4 of [6] to compute the values
MEcom½1� ðmod NÞ, M�Ecom½�1� ðmod NÞ, ME0i½1� ðmod NÞ, and M�E0i½�1� ðmod NÞ, for i = 1, 2, 3.

Step 4. Compute the intermediate exponentiation values as:

MEi ðmod NÞ ¼ MEcom½1�ME0i½1� M�Ecom½�1�M�E0i½�1�
� ��1

ðmod NÞ for i ¼ 1; 2; 3: ð5Þ

Step 5. The modular exponentiation ME(modN) can be calculated as follows:

ME ¼ ME1kE2kE3 ¼ ððME1 Þ2
mþ1

ðME2 ÞÞ2
mþ1

ME3 ðmod NÞ: ð6Þ

For efficiency evaluation, the improved CMM–MSD Montgomery algorithm mentioned in Step 3 can be rewritten as Fig. 1.
Here, MMR() denotes the CMM Montgomery method [4].

3. Computational efficiency of Wu’s method

3.1. Preliminaries

Let Pr (EV) denote the probability that the event EV occurs. There is a well-known property of the MSD representation [1]
as follows.

Fig. 1. Improved Montgomery modular exponentiation algorithm.

332 D.-Z. Sun et al. / Information Sciences 223 (2013) 331–334



Download	English	Version:

https://daneshyari.com/en/article/393914

Download	Persian	Version:

https://daneshyari.com/article/393914

Daneshyari.com

https://daneshyari.com/en/article/393914
https://daneshyari.com/article/393914
https://daneshyari.com/

