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tions as compared to Dussé-Kaliski's Montgomery algorithm and Ha-Moon’s Montgomery
algorithm, respectively. However, in this comment, we demonstrate that Wu’s algorithm
on average reduces the number of single-precision multiplications by at most 22.43%
and 6.91%, when respectively compared with Dussé-Kaliski’'s version and Ha-Moon’s ver-
sion. That is, the computational efficiency of Wu’s algorithm is obviously overestimated.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

The modular exponentiation is the dominant part of the implementation costs in many prevailing public-key cryptosys-
tems. Therefore, Wu [6] proposed a fast modular exponentiation algorithm, of which the idea is to combine the common-
multiplicand-multiplication (CMM) Montgomery method [4], the folding exponent method [3,5], and the minimal-signed-
digit (MSD) recoding method [1]. According to Wu'’s claim, the proposed algorithm on average saved about 38.9% and
26.68% of single-precision multiplications as compared to Dussé-Kaliski’'s Montgomery algorithm [2] and Ha-Moon’s Mont-
gomery algorithm [4], respectively.

However, we demonstrate that Wu’s algorithm on average reduces the number of single-precision multiplications by at
most 22.43% and 6.91%, when respectively compared with Dussé-Kaliski’s version and Ha-Moon’s version. Our computa-
tional efficiency result is accurate, because all crucial operations in Wu'’s algorithm are considered exactly.

2. Brief description of Wu’s method

For a self-contained discussion, we briefly review Wu'’s algorithm and refer the readers to [6] for more details about it. To
compute the modular exponentiation M5(mod N), Wu’s algorithm can be restated as follows:

Step 1. Divide the MSD representation (e,_; - - - €1€g9)usp for the exponent E into three equal-length bit strings E;, E», and Es,
i.e. E = Eq||E2||E3, where || denotes the bit string concatenation.
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Step 2. Compute

Ecom = E1 AND E; AND E; = (€%, - - e%€9), (1)
E; = E; XOR Eco = (€1, -elel), 2)
E, = E; XOR Eco = (€3, - -e7e}), (3)
Ey = E3 XOR Eco = (€2, -+~ €3¢3), (4)

where m = [¥] — 1 and [ ] denotes the usual ceiling function. The definitions of the bitwise logical “AND” and “XOR” oper-
ators are presented in Table 1 of [6]. Next, let the bit strings Egomn1) = (eﬁ.,[” _ e?“]egm) and Ecom 1] = (e‘,ﬂ’” . e?[’”eg[’”) sep-

arately store all bits of 1 and all bits of —1 in the bit string E,,. Similarly, let the bit strings El’-m = (eﬂ"” . --e'}”eﬁ”) and

Ej_y = (eﬂf” e e’}’”eﬁ’”) separately store all bits of 1 and all bits of —1 in the corresponding bit strings E; fori=1, 2, 3.

Step 3. Use the so-called improved CMM-MSD Montgomery algorithm described in Section 3.4 of [6] to compute the values
MEeni(mod N), Mot (mod N), M (mod N), and M 5i-1(mod N), fori=1, 2, 3.
Step 4. Compute the intermediate exponentiation values as:

. ;-1
MFi(mod N) = MEeni MFin (M’Em'"l*”M’Eﬂfll) (mod N) fori=1, 2, 3. (5)
Step 5. The modular exponentiation ME(modN) can be calculated as follows:

om+1

ME = MEIEIE — ((ME2™ (ME2))2" ' M (mod N). (6)

For efficiency evaluation, the improved CMM-MSD Montgomery algorithm mentioned in Step 3 can be rewritten as Fig. 1.
Here, MMR() denotes the CMM Montgomery method [4].

3. Computational efficiency of Wu’s method
3.1. Preliminaries

Let Pr (EV) denote the probability that the event EV occurs. There is a well-known property of the MSD representation [1]
as follows.

Algorithm 1
INPUT:M,N,R=0"(mod N), E,,,,

Ej, = (e’m el ), and £, = (ei[’ll A l for i=1,2,3.

m

— (0 oft] ,o[1] _(,00-11 0[-1] ,0[-1]
]_(em e ey )‘Emru[fl]_(e e € )=

m m

D, =M "1 (mod N), fori=1,2,3.

Step Al-1: C,=C,=C,=C,=D,=D, =D, =D, =R(mod N), S = MR(mod N);
Step A1-2: fori=0tomdo{

Step Al-2.1: ife™ =1  then C, =MMR(C,S); // evaluate M " (mod N)

Step A1-2.2: if e" = —1 then D, = MMR(D,S);, // evaluate M " (mod N)
Step A1-23: ife/ =1  then C, = MMR(C,S); // evaluate M "™ (mod N)
Step A1-2.4: if e =1 then D, =MMR(D,S), //evaluate M (mod N)
Step A1-2.5: ifeX =1  then C, = MMR(C,S), //evaluate M “" (mod N)
Step A1-2.6: if eX"1 =—1 then D, = MMR(D,S); // evaluate M " (mod N)
Step Al-2.7: if e =1  then C, =MMR(C,S);, // evaluate M " (mod N)
Step Al-2.8: if X =—1 then D, = MMR(D,S), // evaluate M (mod N)

Step A1-2.9: §=MMR(SS);}

Step Al-3: C, =MMR(C,), D, =MMR(D, ),C, = MMR(C, ), D, = MMR(D, ),
C, =MMR(C, ), D, =MMR(D, ), C, = MMR(C, ), D, = MMR (D );

Step Al-4: Return(C,,D,,C,,D,,C,,D,,C;,D;).

Fig. 1. Improved Montgomery modular exponentiation algorithm.
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