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a b s t r a c t

Dimensionality Reduction (DR) is attracting more attention these days as a result of the
increasing need to handle huge amounts of data effectively. DR methods allow the number
of initial features to be reduced considerably until a set of them is found that allows the
original properties of the data to be kept. However, their use entails an inherent loss of
quality that is likely to affect the understanding of the data, in terms of data analysis. This
loss of quality could be determinant when selecting a DR method, because of the nature of
each method.

In this paper, we propose a methodology that allows different DR methods to be ana-
lyzed and compared as regards the loss of quality produced by them. This methodology
makes use of the concept of preservation of geometry (quality assessment criteria) to
assess the loss of quality. Experiments have been carried out by using the most well-known
DR algorithms and quality assessment criteria, based on the literature. These experiments
have been applied on 12 real-world datasets.

Results obtained so far show that it is possible to establish a method to select the most
appropriate DR method, in terms of minimum loss of quality. Experiments have also high-
lighted some interesting relationships between the quality assessment criteria. Finally, the
methodology allows the appropriate choice of dimensionality for reducing data to be
established, whilst giving rise to a minimum loss of quality.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The use of Dimensionality Reduction (DR) in recent decades has been motivated by the difficulties in analyzing very high
dimensional data. Historically, the main DR applications have been, amongst others, the elimination of data redundancy and
noise, the reduction in the number of features for minimizing the computational cost in data pre-processing, the identifica-
tion of the most discriminative features and the reduction of features for visualization tasks.

However, the use of DR entails an inherent loss of quality that is likely to affect the understanding of the data, in terms of
data mining. That is, patterns discovered and extracted from a dimensionally reduced data will probably be a small part of
the patterns extracted from the original data. Furthermore, the meaning of these patterns may be altered by this reduction.
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On the other hand, each DR algorithm has been created to achieve a specific aim, which defines its specific nature. It is
also true that, depending on its specification, a DR algorithm can give rise to more or less loss of quality at the time of reduc-
ing the data.

Different comparative studies comparing the different DR algorithms are currently being addressed in the literature
[74,108,66]. Specifically, a set of quality assessment criteria, based on geometry-preservation concepts, have been used in
several comparative research studies [77,37,119]. However, these studies are not sufficiently complete because of the lack
of quality criteria and datasets used, as well as the fact that an exhaustive analysis of the geometry preservation is not carried
out throughout the entire DR process (instead, it is carried out on a particular dimensionality, usually 2).

In this paper we propose a methodology for comparing DR algorithms based on the concept of loss of quality. Thus, the
loss of quality could be strongly linked to the preservation of geometry. That is, the greater the loss of quality, the less the
preservation of geometry. Hence, this methodology uses 11 quality assessment criteria to make a comparative analysis. Fur-
thermore, this new approach attempts to address some of the shortcomings of the aforementioned studies.

The rest of this paper is structured as follows: Section 2 explains the basic concepts of a DR process and classification of
DR algorithms. Quality assessment measures to calculate the preservation of geometry of data, used in the proposed meth-
odology, are presented in Section 3. Previous comparative studies on DR, presented as related work, are detailed in Section 4.
The proposed methodology for the comparison of DR methods is presented in Section 5. In Section 6 the environment for
carrying out the experiments is described. The experimental results are also presented. Finally, Section 7 draws the main
conclusions of the paper.

2. Dimensionality reduction methods

2.1. Basis

Based on the nomenclature stated in Table 1, Dimensionality Reduction (DR) can be defined as follows: X is made up of n
datavectors xiði 2 1;2; . . . ;nÞwith dimensionality D. The DR techniques transform X with dimensionality D into a new dataset
Y with a target dimensionality d0 (where d0 < D, often d0 � D), while retaining the original geometric structure of high-
dimensional data as much as possible [113]. The fundamental assumption that justifies the DR is that the original data actu-
ally lies, at least approximately, on a manifold (often nonlinear) of lower dimension than the original data space. The aim of
DR is to find a representation of that manifold (a coordinate system) that will allow X to be projected on it and obtain Y, that
is a low-dimensional and compact representation of the data.

Let d be the intrinsic dimensionality of the dataset. The intrinsic dimensionality of data is the minimum number of
parameters needed to account for the observed properties of the data [29,62]. Ideally, the reduced representation Y should
have a dimensionality that corresponds to the intrinsic dimensionality of the data.

There are currently two canonical ways of dealing with data when carrying out a DR process. The first one does so in a
linear way (Linear Dimensionality Reduction or LDR), while the second one is in a nonlinear way (Nonlinear Dimensionality
Reduction or NLDR). LDR handles data containing linear dependencies. However, they are not powerful enough to deal with
complex data. NLDR methods are assumed to be more powerful than linear ones, since the procedure to connect the latent
variables (aka intrinsic dimensionality) to the observed ones (the dimensionality of the original space) may be much more

Table 1
Main nomenclature.

Notation Description

D Dimensionality of the high-dimensional data
d Intrinsic dimensionality of the high-dimensional data
n Total number of datapoints
M Topological manifold

RD D-Dimensional Euclidean space where high-dimensional datapoints lie

Rd d-Dimensional Euclidean space (low-dimensional space using d dimensionality)

xi the ith datapoint in RD

yi the ith datapoint in Rd

X Original dataset in RD (X ¼ x1; x2; . . . ; xn).
Y Reduced dataset in Rd (Y ¼ y1; y2; . . . ; yn).
Dg Pairwise geodesic distance matrix in RD

d Pairwise euclidean distance matrix in RD

f Pairwise euclidean distance matrix in Rd

Dgij Pairwise geodesic distance between xi and xj

dij Pairwise euclidean distance between xi and xj

fij Pairwise euclidean distance between yi and yj

k Number of neighbors of a datapoint
Xik Set of k nearest neighbors of xi

Yik Set of k nearest neighbors of yi
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