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a b s t r a c t

Linear models are preferable due to simplicity. Nevertheless, non-linear models often
emerge in practice. A popular approach for modeling nonlinearities is by piecewise-linear
approximation. Inspired from fuzzy inference systems (FISs) of Tagaki–Sugeno–Kang (TSK)
type as well as from Kohonen’s self-organizing map (KSOM) this work introduces a genet-
ically optimized synergy based on intervals’ numbers, or INs for short. The latter (INs) are
interpreted here either probabilistically or possibilistically. The employment of mathemat-
ical lattice theory is instrumental. Advantages include accommodation of granular data,
introduction of tunable nonlinearities, and induction of descriptive decision-making
knowledge (rules) from the data. Both efficiency and effectiveness are demonstrated in
three benchmark problems. The proposed computational method demonstrates invariably
a better capacity for generalization; moreover, it learns orders-of-magnitude faster than
alternative methods inducing clearly fewer rules.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

The need to induce, efficiently, an effective model (real function) y : RN ! RM arises frequently in practical applications. In
particular, linear models yðxÞ ¼ c0 þ c1x1 þ c2x2 þ � � � þ cNxN are preferable due to simplicity. However, most often, the
dependence of a system output y on the input variables x1; . . . ; xN is non-linear.

One way of modeling nonlinearities is by piecewise-linear approximation. For instance, in the context of fuzzy sets and
systems, the TSK (Tagaki–Sugeno–Kang) fuzzy model, described by Sugeno and Kang [49], Sugeno and Tanaka [50], Sugeno and
Yasukawa [51], Takagi and Sugeno [54], combines linguistic (fuzzy) interpretations of its numeric inputs with a (locally,
within a cluster) linear computation of an output in order to achieve a non-linear input-to-output map. Recent TSK modeling
applications have been reported also by Rezaee and Fazel Zarandi [44], Zhou and Gan [71], etc. For the reader’s convenience,
the operation of a TSK model is summarized in the Appendix A.

Critical for the computation of a TSK model is the computation of input data clusters. A popular clustering scheme is
Kohonen’s self-organizing map (KSOM) introduced by Kohonen [33], mainly for visualization of non-linear relations of multi-
dimensional data. Er et al. [12] have confirmed the capacity of KSOM for rapid data processing. Pascual-Marqui et al. [42]
have reported a soft (fuzzy) KSOM synergy with conventional fuzzy c-means, where the code vectors are distributed on a
regular low-dimensional grid. Moreover, Vuorimaa [61] has introduced a fuzzy extension of KSOM for function f : RN ! R
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approximation using triangular fuzzy membership functions, exclusively. Lately, Kaburlasos and Papadakis [23] have pro-
posed granular (fuzzy) extensions of KSOM in classification applications.

This work introduces a synergy of TSK- with KSOM-inspired techniques towards an efficient as well as effective piecewise-
linear approximation of non-linear models as explained below. The proposed synergy builds on an established mathematical
result, namely the ‘‘resolution identity theorem”, presented by Zadeh [68], which specifies that a fuzzy set can (equivalently)
be represented either by its membership function or by its a-cuts.

Note that even though a fuzzy set can be defined on any universe of discourse, in practice, the real numbers universe of
discourse R is preferred as pointed out by Kaburlasos and Kehagias [22]. More specifically, fuzzy numbers are typically em-
ployed, for instance in fuzzy inference systems (FISs). Recall that a fuzzy number is defined as a convex, normal fuzzy set,
often with bounded support. A fuzzy number is defined on R with an upper semicontinuous membership function as de-
scribed in Kaburlasos [19], Vroman et al. [60].

It turns out that a a-cut of a fuzzy number is an interval; hence, based on the aforementioned ‘‘resolution identity the-
orem”, a fuzzy number can be represented by a set of intervals. In conclusion, Uehara and Fujise [56], Uehara and Hirota [57],
Uehara et al. [58] have proposed a novel FIS design in practical applications based on a-cuts (intervals) of fuzzy numbers –
Advantages include faster (parallel) data processing ‘‘level-by-level”, ‘‘orders-of-magnitude” smaller computer memory
requirements, etc. Senturk and Erginel [46] have employed a-cuts for enhancing traditional control strategies. Furthermore,
Cornelis et al. [9], Nachtegael and Kerre [36] have considered a-cuts/intervals for fuzzy logic/morphology operations in the-
oretical studies involving ambiguity.

This work builds creatively on the ‘‘resolution identity theorem” by, first, considering the equivalent a-cuts (interval) repre-
sentation for a fuzzy number and, second, by dropping the corresponding possibilistic interpretation. Hence, anintervals’ number
(IN) emerges as a mathematical object, which may admit either a possibilistic or a probabilistic interpretation as explained below.
Advantages include an introduction of useful linear operations, tunable nonlinearities, a capacity to deal with granular data, etc.
Instrumental for IN-based analysis and design is (mathematical) lattice theory (LT) because the set of (closed) intervals on the real
line is partially (lattice)-ordered. For the reader’s interest, the emergence of LT in information processing is outlined next.

Mathematical lattices have emerged in the first half of the nineteenth century as a spin off of work on formalizing prop-
ositional logic. During the next one hundred years LT was established, and compiled creatively by Garrett Birkhoff [4]. Cur-
rently, there is a number of research communities that employ LT in various information processing domains including, first,
Logic and Reasoning for automated decision-making (see in Xu et al. [66]), second, mathematical morphology for signal/image
processing (see in Ritter and Wilson [45]), third, formal concept analysis for knowledge-representation and information-re-
trieval (see in Ganter and Wille [15]), fourth, computational intelligence for clustering, classification, and regression applica-
tions (see in Kaburlasos [20]), etc.

There are two different approaches for employing LT in practice. The first approach, namely order-based, is based on seman-
tics represented by the lattice (partial)-order as demonstrated also by Bloch et al. [5], Ganter and Wille [15], Lai and Xu [34]. The
second approach, namely algebra-based, is based on the lattice (algebraic)-operations of meet ð^Þ and join ð_Þ as demonstrated
also by Graña et al. [17], Ritter and Wilson [45], Soille [48], Valle and Sussner [59]. Various combinations of the aforementioned
two approaches have also been reported, for instance in classification applications by da Silva and Sussner [10], Kaburlasos [20],
Sussner and Esmi [52,53]. In this work, we describe a novel combination of the aforementioned two approaches.

Previous work by Kaburlasos [19,20], Kaburlasos and Kehagias [22], Kaburlasos and Papadakis [23,25], has employed the
termfuzzy interval number (FIN) instead of the term intervals’ number (IN), because it stressed a fuzzy interpretation. Recently,
Kaburlasos and Papadakis [24] have switched to the term IN, including also an improved mathematical notation. Likewise,
the term ‘‘CALFIN”, proposed previously for an algorithm which induces a ‘‘FIN” from a population of measurements, is elo-
quently replaced here by the term ‘‘CALCIN”.

This paper presents significant enhancements over the preliminary work by Kaburlasos and Papadakis in [24] as follows.
First, we introduce a novel similarity measure function ðl^Þ. Second, we detail structure/parameter identification algorithms
based on l^ rather than on metric dp, the latter was employed in [24]; here, we also compute the corresponding algorithm
complexity. Third, we demonstrate an employment of a IN as either a probability- or a possibility-distribution. Fourth, we
demonstrate two additional benchmark problems including improved experimental results; moreover, in all benchmark
problems, we display rules induced. Fifth, we discuss novel theoretical perspectives. Sixth, we cite a large number of addi-
tional references including comparative discussions.

This paper is organized as follows. Section 2 summarizes the mathematical background. Section 3 presents a novel struc-
ture identification. Section 4 describes a novel parameter identification. Section 5 details, comparatively, experimental re-
sults. Section 6 concludes by summarizing our contribution including also future work. The Appendix A includes the
proof of a proposition as well as two computational algorithms used in the experiments.

2. Mathematical background

This section summarizes useful mathematical results and tools introduced by Kaburlasos [20], Kaburlasos and Kehagias
[21,22], Kaburlasos and Papadakis [23–25], Kaburlasos et al. [27]. Mathematical lattice theory here is instrumental.

Recall from Birkhoff [4] that given a set P, a binary relation ð6Þ on P is called partial order if and only if it satisfies the
following three conditions: ‘‘x 6 x” (Reflexivity), ‘‘x 6 y and y 6 x) x ¼ y” (Antisymmetry), and ‘‘x 6 y and y 6 z) x 6 z”
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