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10 vertices and demonstrate that a 97-dimensional multivariate graph invariant is capable
to distinguish each of the non-isomorphic graphs. Furthermore, in order to tame the com-
putational complexity of the problem caused by the vast number of graphs, e.g., involving
over 10 million networks with 10 vertices, we suggest a low-dimensional, iterative proce-
- dure that is based on highly discriminative individual graph invariants. We show that also
Quantitative graph theory . . L .
Information inequality this computational ‘approach leads to a perfeFt discrimination. Oyerall, our nume.rlcal
Statistics results prove the existence of such graph invariants for networks with 9 and 10 vertices.
Random network model Furthermore, we show that our iterative approach has a polynomial time complexity.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Graph invariants [7,13,30,54] are quantitative measures that preserve the structural properties of graphs under isomor-
phism. This implies that two networks with a different structure can be distinguished from each other by such invariants
unambiguously. A large number of such measures have been extensively explored and applied in various disciplines such
as computational physics [17,58], structural chemistry [25,24,54], ecology [55,56] and computational linguistics [43]. In
practice, graph invariants have been developed to characterize the structure of graphs by using specific structural features
such as distances, vertex degrees, eigenvalues and other invariants. Also, several graph-theoretical matrices [32] such as the
adjacency matrix, the distance matrix or the Laplacian matrix, to name just a few, have been utilized to derive graph invari-
ants [9,10]. An example of graph characterization is to determine its structural complexity by using the invariants [9,10,23].
Hence, it is natural to ask for graphs that minimize or maximize an invariant. As recent work demonstrates, this problem
turned out to be quite challenging when using information-theoretic graph invariants (i.e., graph entropies) [22]. Another
application of graph invariants is to examine graph isomorphism [39]. However, due to the complexity of this problem,
unique graph invariants for general graphs have yet not been found. For practical applications, detecting a graph isomor-
phism is important, e.g., for finding structurally identical molecules in chemical databases [24,26] or to examine the
equivalence of electronic circuits represented by graphs [37].

A severe problem of many graph invariants is that they do not allow to discriminate graphs uniquely. That means,
applying such a measure to non-isomorphic graphs, i.e., to networks that cannot be mapped to each other by application
of a bijective function, may nevertheless result in the same value. This property of a graph invariant is also referred to as
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‘degeneracy’, ‘discrimination power’ or ‘uniqueness’ and has been investigated since decades [12,20,21,31,36,34]. Most of the
existing graph invariants are so-called ‘numerical graph invariants’, i.e., they map graphs to real numbers by taking struc-
tural features into account. Another problem is that the degeneracy of many graph invariants has been only explored for spe-
cial graph classes, for instance chemical graphs or Erdés-Rényi random networks [12,7,36,34]. Here by a special graph class,
we mean a set of graphs for which each network is conform with a specific structural constraint that limits the structural
complexity of all these networks within this class.

Moreover we also sketch some more up-to-date contributions dealing with graph invariants [38,46,57,59]. For instance,
Liu and Liu [38] developed a structural measure based on the known graph energy formula [27] by using the Laplacian of a
graph. Wang and Luo [57] proved properties thereof such as new lower bounds depending on the maximum degree. Noy [46]
surveyed results for determining graphs that can be characterized by polynomials uniquely. Wu [59] explored properties of
normalized Laplacian matrices which are invariant under graph isomorphism. As a result, Wu [59] found that the desired set
of graph only contains the K, ,, its complement and all complete graphs. Finally, Dehmer et al. [21] developed highly discrim-
inating graph measures based on Shannon'’s entropy and presented a measure that discriminates about 98% out of nearly 12
million of graphs with 10 vertices uniquely.

However, this implies that one cannot generalize such findings to general (unconstraint) graphs, because the graph class
under consideration has a considerable influence on the results [12,20,21]. For instance, graph invariants such as the
well-known Balaban J index [6] and the local entropies of Konstantinova [35], possess a high uniqueness (i.e., little degen-
eracy) for trees, but they fail to discriminate more general networks, see [21].

Ultimately, it would be desirable to find graph invariants that describe all non-isomorphic graphs uniquely. Such a
measure is called complete graph invariant (see Section 2). Extensive research has been performed to derive such invariants
[13], however, until now, no efficiently computable complete graph invariants have been found for general (unconstraint)
graphs. Finding complete graph invariants that are computable in a polynomial time complexity would be a breakthrough,
as it would solve the graph isomorphism problem, whose complexity has to date still not been determined [39,51].

In this paper, we present a computational approach for finding complete multivariate graph invariants. Our method is
based on applying highly discriminating topological graph invariants (numerical graph invariants) [24,30,54] to general
graphs iteratively. A major contribution of this paper is that we prove the existence of complete multivariate graph invari-
ants for graphs consisting of 9 and 10 vertices. To demonstrate the feasibility of our approach, we apply (composed) numer-
ical graph invariants to exhaustively generated graphs that are non-isomorphic and connected with 9 and 10 vertices. We
would like to note that the vast number of those graph sets (see Section 2) posses an enormous computational challenge
for the discrimination power of the used numerical graph invariants, as Dehmer et al. [20] found that many invariants show
a strong dependency between their discrimination power and the size of the graph set under consideration.

2. Constructing a multivariate graph invariant
2.1. Preliminaries

Let G be a class of graphs, i.e., G is a set and its elements, G; € G, for j € I from an index set, are networks. A graph invariant
[7,13,30,28], we call y, is a mapping from G to a d-dimensional vector of real numbers, i.e., y : G—IR?,d > 1 where from
G = H (G is isomorph to H) = (G) = /(H),G,H € G. Here, for d > 1 the equality of (G) = y/(H) is assessed componentwise.
Furthermore, we call a graph invariant ‘complete’ if from (G) = y(H) = G = H, for all G,H € g, see [13]. Note that existing
topological indices [54,25] for characterizing graphs are also graph invariants. The reason for this is that these measures uti-
lize only the underlying graph topology and do not depend on any vertex or edge labels [54]. Well known examples thereof
are measures that are, e.g., based on distances, vertex degrees and eigenvalues [18,20,24].

Some failures in the scientific literature underpin the complexity of the problem to characterize graphs uniquely by using
graph invariants. For instance, Spialter [52] assumed mistakenly that a polynomial closely related to the characteristic poly-
nomial of a graph is sufficient to discriminate molecules (represented by graphs) uniquely [49]. However, this was disproven
by Balaban and Harary [8]. It is interesting to note that the problem of deriving a complete graph invariant is computation-
ally equivalent to a canonical labeling of a graph [33]. Due to the computational complexity of this problem, this implies that
no polynomial-time algorithm has been found to solve this problem and, thus, the problem to find complete graph invariants
with reasonable time complexity remains quite intricate.

2.2. Definition of a multivariate graph invariant

In the following, we construct a multivariate graph invariant from existing one-dimensional graph invariants and dem-
onstrate that it is actually a complete graph invariant. We call this measure GI. Specifically, we define GI as an m-dimen-
sional function by,

that is a mapping from G to IR™. Here, each y; (i € [1,...,m]) is a one-dimensional graph invariant. In Tables 4 and 5, we list
the graph invariants we use in this study. Due to the fact that for two graphs, G; and G, the equality of GI[G;] = GI[G] is
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