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a b s t r a c t

In this paper, we propose a scalar multiplication algorithm on elliptic curves over GF(2m).
The proposed algorithm is an extended version of the Montgomery ladder algorithm with
the quaternary representation of the scalar. In addition, in order to improve performance,
we have developed new composite operation formulas and apply them to the proposed
scalar multiplication algorithm. The proposed composite formulas are 2P1 + 2P2, 3P1 + P2,
and 4P1, where P1 and P2 are points on an elliptic curve. They can be computed using only
the x-coordinate of a point P = (x,y) in the affine coordinate system. However, the proposed
scalar multiplication algorithm is vulnerable to simple power analysis attacks, because
different operations are performed depending on the bits of the scalar unlike the original
Montgomery ladder algorithm. Therefore, we combine the concept of the side-channel
atomicity with the proposed composite operation formulas to prevent simple power
analysis. Furthermore, to optimize the computational cost, we use the Montgomery trick
which can reduce the number of finite field inversion operations used in the affine
coordinate system. As the result, the proposed scalar multiplication algorithm saves at
least 26% of running time with small storage compared to the previous algorithms such
as window-based methods and comb-based methods.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Elliptic Curve Cryptography (ECC) was introduced in 1985 independently by Koblitz and Miller [14,18]. Since there are no
known sub-exponential time algorithms to solve the Elliptic Curve Discrete Logarithm Problem (ECDLP), ECC provides an
equivalent level of security with even smaller key size than other public key cryptosystems based on the Discrete Logarithm
Problem (DLP) and the Integer Factoring Problem (IFP) over finite fields. The small key size of ECC is suited for low-powered
mobile devices such as smart-cards, mobile phones, and PDAs. As the demands for low-powered devices have been increas-
ing, many researches have been conducted for improving efficiency and security in ECC.

Scalar multiplication, defined as dP (P + � � � + P,d times), where d is an integer and P is an elliptic curve point, is a major oper-
ation in ECC. It is computed with elliptic curve basic operations, elliptic curve point addition, i.e., ECADD(P1,P2) = P1 + P2, and
elliptic curve point doubling, i.e., ECDBL(P1) = 2P1, where P1 and P2 are points on the elliptic curve, that are composed of several
field operations. Many researches have been conducted to raise the efficiency of the scalar multiplication. There are two main
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approaches to reduce the running time of the scalar multiplication. The first approach is to reduce the number of elliptic curve
basic operations that appear in the scalar multiplication algorithm. For example, window-based methods and comb-based
methods use signed representations of the scalar and table look-up [2,20,22]. The second approach is to optimize the elliptic
curve basic operations themselves. For example, elliptic curve operations can be computed by some efficient coordinate
systems, such as projective coordinate and Jacobian projective coordinate, and composite operations, such as 2P1 + P2 and
3P1 [5,9]. In addition, in the affine coordinate system, the use of the Montgomery trick can reduce the number of field
inversions [6].

However, if the implementation of ECC is careless, an adversary can break the secret key by observing side channel
informations [15,16]. This attack is called the Side Channel Analysis (SCA). Namely, the adversary obtains the secret key
without solving ECDLP and decapsulating the physical devices. After the introduction of SCA, the implementation of ECC
has to ensure resistance against SCA. In particular, Simple Power Analysis (SPA) is one of the powerful attacks for the scalar
multiplication algorithms. Since elliptic curve basic operations, ECADD and ECDBL, have different costs and patterns, they can
be distinguished from their power consumptions or computing timings. In addition, since the basic operation which is
computed depends on the value of the secret key, most scalar multiplication algorithms are vulnerable to SPA. Thus, many
countermeasures have been proposed to make the scalar multiplication resistant against SPA. The previous SPA countermea-
sures can be classified into two types. The first type makes the scalar multiplication a fixed pattern, independent of the secret
key, such as the Montgomery ladder [13] and the double-and-add always method [7]. However, they require many dummy
operations. And so, they can be slower than unprotected methods against SPA. The second type makes the basic operations
indistinguishable, such as indistinguishable operation method [3] and side-channel atomicity [4]. They impose ECADD and
ECDBL to have the same patterns and the number of field operations. Then, since power consumption of ECADD can be
remarkably similar to that of ECDBL, an adversary cannot distinguish between ECADD and ECDBL by SPA. However, the sec-
ond type can leak information for the Hamming weight of the secret key by counting elliptic curve point operations from a
power consumption trace. For example, for the binary scalar multiplication algorithm, we can identify elliptic curve point
operations from a power consumption trace, even if ECADD and ECDBL are not distinguished. The total number of elliptic
curve point operations is the sum of the Hamming weight and the bit size of the scalar, i.e., the secret key. Since the param-
eters of cryptosystems are public, we know the bit size of the key. As the result, the Hamming weight of the key is the num-
ber of elliptic curve point operations minus the bit size of the key.

As mentioned above, the demerit of the Montgomery ladder algorithm is slow performance. Therefore, our aim is to im-
prove the performance of the Montgomery ladder algorithm. The original Montgomery ladder algorithm uses the binary
expression of the scalar. In this paper, we propose a new efficient and secure scalar multiplication algorithm based on the
Montgomery ladder algorithm with the quaternary expression of the scalar. We also propose composite formulas with
SPA resistance by applying the concept of side-channel atomicity. Here, the quaternary expression is useful to reduce the
length of the scalar representation. For example, let the key be an n-bit long positive integer. Then, the length of the quater-
nary expression is 0.5n. In conjunction with the quaternary expression, we propose new composite operations, such as ellip-
tic curve point double-add-double, i.e., ECDAD(P1,P2) = 2P1 + 2P2, elliptic curve point triple-and-add, i.e.,
ECTA(P1,P2) = 3P1 + P2, and elliptic curve point quadrupling, i.e., ECQPL(P1) = 4P1. The proposed new composite operation for-
mulas can utilize only the x-coordinate in the affine coordinate system. However, the proposed algorithm is vulnerable to
SPA, because different operations are performed depending on the bits of the scalar unlike the original Montgomery ladder
algorithm. In order to resist SPA, we apply side-channel atomicity to our composite operations. Furthermore, we use the
Montgomery trick to speed up the processing. The proposed quaternary Montgomery ladder algorithm saves at least 26%
of running time using only two storages compared to existing algorithms, such as window-based methods and comb-based
methods using 8 storages when applying window size 4 [20,22].

2. Elliptic curve cryptosystem and side channel analysis

2.1. Elliptic curve cryptosystem

A non-supersingular elliptic curve over GF(2m) is given by the following Weierstrass equation [2].

E=GFð2mÞ : y2 þ xy ¼ x3 þ ax2 þ b ð1Þ

with a, b 2 GF(2m), b – 0. The set of all the points in E together with the point at infinity O is denoted by E(GF(2m)). It forms an
abelian group with the point at infinity O as the identity element. Assume P1 = (x1,y1) and P2 = (x2,y2) are two points on E,
where P2 – � P1. Then P3 = P1 + P2 = (x3,y3 ) on the affine coordinate system is computed as follows:

x3 ¼ k2 þ kþ x1 þ x2 þ a; y3 ¼ ðx1 þ x3Þkþ x3 þ y1;

where k ¼ ðy1 þ y2Þ
ðx1 þ x2Þ

if P1 – P2; and k ¼ x1 þ
y1

x1
if P1 ¼ P2:

ð2Þ
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