
Designing a meta-model for a generic robotic agent system
using Gaia methodology

Daniel Castro Silva a,⇑, Rodrigo A.M. Braga b, Luís Paulo Reis b, Eugénio Oliveira b

a University of Coimbra, Department of Informatics Engineering / CISUC - Center for Informatics and Systems of the University of Coimbra, Pólo II, Pinhal de
Marrocos 3030-290 Coimbra, Portugal
b FEUP – Faculty of Engineering of the University of Porto, Department of Informatics Engineering/LIACC – Artificial Intelligence and Computer Science Laboratory,
Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal

a r t i c l e i n f o

Article history:
Received 6 January 2010
Received in revised form 15 April 2011
Accepted 7 January 2012
Available online 24 January 2012

Keywords:
Multi-robot systems
Open systems meta-model
Agent-oriented software engineering
Gaia

a b s t r a c t

The emergence of multi-agent systems in the past years has led to the development of new
methodologies to assist in the requirements and architectural analysis, as well as in the
design phases of such systems. Consequently, several Agent Oriented Software Engineering
(AOSE) methodologies have been proposed. In this paper, we analyze some AOSE method-
ologies, including Gaia, which supports the architectural design stage, and some proposed
extensions. We then use an adapted version of this methodology to design an abstract gen-
eric system meta-model for a multi-robot application, which can be used as a basis for the
design of these systems, avoiding or shortening repetitive tasks common to most systems.
Based on the proposed Generic Robotic Agent Meta-Model (GRAMM), two distinct models
for two different applications are derived, demonstrating the versatility and adaptability of
the meta-model. By adapting the Gaia methodology to the design of open systems, this
work makes the designers’ job faster and easier, decreasing the time needed to complete
several tasks, while at the same time maintaining a high-level overview of the system.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

In the past years, systems that support the use of mobile robots have emerged at a growing rate. These systems are used
in a wide range of areas, including military [19], medical [9], industrial [49], household applications [31,30], and other
smaller or more specific fields of research, such as the Robocup Rescue1 and Soccer competitions,2 as well as several projects
currently under development. Despite the need to develop coordination methodologies among the several entities, the benefits
of a system capable of working in a distributed manner (with simpler entities performing smaller tasks that together contribute
to a larger task completion) are certainly greater than the complexities introduced by this model [1].

Several Agent-Oriented Software Engineering (AOSE) methodologies have been proposed over the years to help model
multi-agent systems, some deriving from existing more traditional software engineering methodologies (usually object-
oriented approaches), others with a more innovative origin. These methodologies are diverse in terms of the development
phases they support, from requirement elicitation to implementation.

The main goal of the work presented in this paper is to introduce a meta-model for a generic robotic agent system, that
can be used as a basis for the modeling of such systems, thus avoiding or shortening repetitive tasks common to most of
these systems. This meta-model can be achieved by using a methodology that supports the architectural design stage.

0020-0255/$ - see front matter � 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.ins.2012.01.029

⇑ Corresponding author. Tel.: +351 91 670 69 14.
E-mail addresses: dcs@dei.uc.pt (D.C. Silva), rodrigo.braga@fe.up.pt (R.A.M. Braga), lpreis@fe.up.pt (L.P. Reis), eco@fe.up.pt (E. Oliveira).

1 More information available online at http://www.robocuprescue.org/.
2 More information available online at http://www.robocup.org/.

Information Sciences 195 (2012) 190–210

Contents lists available at SciVerse ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins

http://dx.doi.org/10.1016/j.ins.2012.01.029
mailto:dcs@dei.uc.pt
mailto:rodrigo.braga@fe.up.pt
mailto:lpreis@fe.up.pt
mailto:eco@fe.up.pt
http://dx.doi.org/10.1016/j.ins.2012.01.029
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins


One such methodology is Gaia, a somewhat generic methodology that excludes requirements elicitation and implementa-
tion, focusing on analysis and design of the system [47]. Even though the Gaia methodology was originally intended to be
used in the design of organizational systems, with a more defined set of hierarchical organization, it can also be used in
the design of open systems, with minor modifications, as introduced in Section 4.

In the following section, we present a brief overview on some existing AOSE methodologies, as well as a brief analysis on
some proposed extensions to the Gaia methodology (Section 2.4). In more detail, we present and analyze:

� the differences between the original Gaia methodology and the official proposed improvements
� the proposed AUML extensions
� the proposed ROADMAP extension
� the extensions and replacements as proposed by [10]

We also introduce a model for an extended version of the Gaia methodology, using the Software Process Engineering
Metamodel (SPEM) 2.0 notation – see Section 3. This is believed to be an original contribution that provides a higher formal-
ization and facilitates a better understanding of the Gaia methodology.

In Section 4, we introduce the proposed meta-model for a multi-agent system including several robotic vehicles and some
peripheral agents using Gaia-based methodology. We then instantiate the Generic Robotic Agent Meta-Model (GRAMM) into
two distinct designs for two different systems (Section 5).

Finally, on Section 6, we present some conclusions about the work that has already been done, as well as the guiding lines
for the next steps to be taken.

2. AOSE methodologies and extensions

The ever-growing use of agent-based technology and applications has brought forward the need for methodologies that
could aid designers not only in development and deployment, but also in the early analysis and design phases of a project, in
a manner similar to what traditional software engineering techniques have done for more conventional software projects,
namely when using an object-oriented paradigm [27].

In this section, we briefly introduce some of the most widely known AOSE methodologies that have emerged in the past
years (for a more complete and detailed review of existing methodologies, see [4] or chapter 7 of [41]).

2.1. MaSE

The Multiagent Systems Engineering (MaSE) methodology was introduced in 2000 as a comprehensive methodology,
including analysis and design stages [46]. It uses a number of graphical models to describe goals, behaviors, agent types,
and agent communication interfaces, also providing detailed definition of internal agent design [16]. In the first analysis
phase, goals are determined and structured by analyzing an already existing initial system specification. The second analysis
phase is centered around use cases, detecting roles, use cases and use case scenarios from the system specification. In the
third analysis phase, the identified roles are refined, producing a more detailed description of each role and their respective
goals, as well as interactions with other roles. In the design stage, roles are mapped into specific agent classes; communica-
tion protocols between agent classes are detailed; the internal details of each agent class are defined, using components and
connectors; and finally a system-wide deployment diagram is created. A tool named agentTool was developed to support the
MaSE methodology (and more recently the Organization-based MaSE, or O-MaSE), from the initial system specification to
implementation, using a set of inter-related graphical models [15].

2.2. Tropos

Tropos was introduced in 2002 as a comprehensive AOSE methodology, encompassing all stages of project design, from
early requirements elicitation to detailed design [24]. Tropos can be considered as loosely based on a use-case model used in
traditional Software Engineering methodologies. Its key concepts include actor, goal, plan, resource, dependency, capability
and belief [8]. During the early requirements elicitation, actors and goals are identified from stakeholders and their objec-
tives, using a goal-oriented analysis. Dependencies between actors and goals are also identified. In the late requirements
stage, all functional and non-functional requirements for the system are specified in more detail. In this stage, the system
is considered as a single actor, while external entities present in the environment are considered as interacting actors.
The architectural design stage produces a model of the system architecture, describing how components work together. Dur-
ing the detailed design stage, detailed models of each component are produced, showing how goals are fulfilled by agents. In
this stage, details such as agent communication language and protocols are specified using a more detailed modeling lan-
guage such as UML (Unified Modeling Language) [23].

2.3. Prometheus

Prometheus was introduced in 2002 as a result of industry and academy experience [38]. It provides support and a de-
tailed process for specification to implementation stages of a project, and includes concepts such as goals, beliefs, plans and

D.C. Silva et al. / Information Sciences 195 (2012) 190–210 191



Download	English	Version:

https://daneshyari.com/en/article/394315

Download	Persian	Version:

https://daneshyari.com/article/394315

Daneshyari.com

https://daneshyari.com/en/article/394315
https://daneshyari.com/article/394315
https://daneshyari.com/

