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a b s t r a c t

In this paper, a new operator is proposed to optimize the traditional Hopfield neural net-
work (HNN). The key idea is to incorporate the global search capability of the Estimation of
Distribution Algorithms (EDAs) into the HNN, which typically has a powerful local search
capability and fast operation. On account of this property of the EDA, our proposed algo-
rithm also exhibits a powerful global search capability. In addition, the possible infeasible
solutions generated during the re-sampling period of the EDA are eliminated by the HNN.
Therefore, the merits of both these methods are combined in a unified framework. The pro-
posed model is tested on a numerical example, the max-cut problem. The new and opti-
mized model yielded a better performance than certain traditional intelligent
optimization methods, such as HNN, genetic algorithm (GA). The proposed mutation Hop-
field neural network (MHNN) is also used to solve a practical problem, aircraft landing
scheduling (ALS). Compared with first-come-first-served sequence, MHNN sequence
reduces both total landing time and total delay.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Although many approaches (such as genetic algorithms) have been proposed for global optimization, serious problems
associated with real-time operation persist. On the other hand, the neural network approach [38] (especially that for hard-
ware implementations, such as the field-programmable gate array (FPGA) chip) provides feasible solutions to complex opti-
mization problems within a very short time (i.e., in real-time) [5]. In the past two decades, neural networks have been widely
used to solve different problems such as mathematical programming, pattern recognition, group classification, series predic-
tion, data mining. The Hopfield neural network (HNN), which was originally proposed in [21], exhibits the best performance
in solving optimization problems out of all existing neural networks, and has therefore attracted considerable attention [36].
Technically, the HNN approach to optimization involves handling a dynamic system in which the behavior of the network
and the problems to be solved can be characterized by the energy function, or the Lyapunov function. This architecture can
be realized by using an electronic circuit, and used as an online solution with a parallel-distributed process, making it par-
ticularly suitable for real-time optimization [36]. However, the energy function of the HNN decreases rapidly only during the
first few iterations. Thereafter, the network oscillates between neuron states with the same energy, and ultimately gets
trapped in local minima [2]. The local minima problem is caused by the gradient descent dynamics of the binary HNN. Re-
cently, Wang [35] proposed an HNN combined with an Estimation of Distribution Algorithm (EDA), a population-based evo-
lutionary algorithm. In the proposed algorithm, once the network is trapped in local minima, the perturbation based on EDA
can generate a new starting point for the HNN. Generating a new starting point for the HNN leads to further research,
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thereby allowing the network to escape local minima. However, the proposed approach has been used only in solving the
two-page crossing number problem; its extension to other applications, therefore, is imperative.

In this paper, we propose a new mutation Hopfield neural network (MHNN) to solve practical optimization problems. The
key idea is to incorporate the global search ability of EDA into the HNN, which typically has a powerful local search capa-
bility. The proposed new optimization model is tested on a numerical example, the max-cut problem, and exhibits better
performance. Finally, we use the proposed MHNN to solve a practical problem in the form of aircraft landing scheduling
(ALS), in which better results were yielded than that with first-come-first-served (FCFS) sequence.

The rest of the paper is organized as follows. Section 2 provides a brief overview of HNNs. In Section 3, the details of the
proposed model and an algorithm for general cases are given. In Section 4 (for the max-cut problem) and Section 5 (for the
ALS problem), the application-specific implementation and performance evaluation of the proposed algorithm are presented.
In Section 6, conclusions and suggestions for future work are put forward.

2. Brief overview of Hopfield neural networks

The use of neural networks for solving optimization problems was initiated by Hopfield and Tank [21]. They demon-
strated the computational power of the neural network by applying their model to the traveling salesman problem. Since
then, several investigators have adopted the Hopfield model to solve various optimization problems (e.g., [2,5,36]). In the
conventional HNN, each neuron is modeled as a nonlinear device (i.e., operational amplifier) with a sigmoid, monotonically
increasing function defined by the logistic function

Vi ¼ fiðUiÞ ¼
1

1þ e�aiUi
; ð1Þ

where Ui is the input of the ith neuron; Vi, with a value between 0 and 1, is the output of the ith neuron; and ai denotes the
gain of the sigmoid function.

Each neuron receives resistive connections (modeling the biological synaptic connection) from other neurons, and these
connections can be fully described by the interconnection matrix T = [Tij]. Here, Tij is the interconnection weight from the jth
neuron to the ith neuron. Each neuron also receives an input bias current of Ii, the only user-adjustable parameter. In Fig. 1,
the conventional structure of a discrete HNN [21] is illustrated.

A discrete HNN with n neurons can be represented by two n � n real matrices W0 ¼ ðw0
ijÞn�n; W1 ¼ ðw1

ijÞn�n, and an n-dimen-
sional column vector b = (b1, . . . ,bn)T, where wij denotes the connection strength between neuron i and neuron j, bi represents the
threshold of neuron i [7]. Denoting the input of neuron i at time k as ui(k), and the output at time k is denoted as vi(k), we get

uiðkÞ ¼
Xn

j¼1;j–i

wijv jðkÞ þ bi; ð2Þ

v iðkþ 1Þ ¼ f ðuiðkÞÞ; ð3Þ

where the excitation function f(�) is usually selected as the symbolic function sgn(�). In this case, two values for the output of
each neuron are possible: 1 or �1. Therefore, we have:

v iðkþ 1Þ ¼
1;

Pn
j¼1;j–i

wijv jðkÞ þ bi P 0;

�1;
Pn

j¼1;j–i
wijv jðkÞ þ bi < 0;

8>>><
>>>:

ð4Þ

The energy function of the discrete HNN is defined as:

E ¼ �1
2

Xn

i¼1;i–j

Xn

j¼1;j–i

wijv iv j þ
Xn

i¼1

biv i: ð5Þ
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Fig. 1. Illustrative diagram of a discrete HNN.
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