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a b s t r a c t

In this manuscript we propose a method for the autonomous determination of endmem-
bers in hyperspectral imagery based on recent theoretical advancements on lattice auto-
associative memories. Given a hyperspectral image, the lattice algebra approach finds in
a single-pass all possible candidate endmembers from which various affinely independent
sets of final endmembers may be derived. In contrast to other endmember detection meth-
ods, the endmembers found using two dual canonical lattice matrices are geometrically
linked to the data set spectra. The mathematical foundation of the proposed method is first
described in some detail followed by application examples that illustrate the key steps of
the proposed lattice based method.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

The high spectral resolution produced by current hyperspectral imaging devices facilitates identification of fundamental
materials that make up a remotely sensed scene and thus supports discrimination between them. A pixel of a hyperspectral
image physically represents a surface region on the ground comprising several square meters. Thus, a hyperspectral image
pixel can have all or parts of many different natural or man-made objects in it. The collection of measured reflectances asso-
ciated with the pixel is called the spectrum of the pixel. It is, therefore, useful to know the percentage of different fundamen-
tal object parts that are most represented in the spectrum of a given pixel. The most widely used spectral mixing model is the
linear mixing model, which assumes that the observed reflectance spectrum of a given pixel is a linear combination of a
small number of unique constituent signatures known as endmembers [1]. In various applications, hyperspectral image seg-
mentation and analysis takes the form of a pattern recognition problem as the segmentation problem reduces to matching
the spectra of the hyperspectral image to predetermined signatures stored in a spectral library. In many cases, however, end-
members cannot be determined in advance and must be selected from the image directly by identifying the pixel spectra
that are most likely to represent the fundamental materials. This comprises the autonomous endmember detection problem.
Unfortunately, the spatial resolution of a sensor makes it often unlikely that any pixel is composed of a single endmember.
Thus, the determination of endmembers becomes a search for image pixels with the least contamination from other end-
members. These are also referred to as pure pixels. The pure pixels exhibit maximal or minimal reflectance in certain spectral
bands and correspond to vertices of a high-dimensional simplex that, hopefully, encloses most if not all pixel spectra.
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In this paper we assume the constrained linear mixing model based on the fact that points on a simplex can be represented
as a linear sum of the vertices that determine the simplex. The mathematical equations of the model and its constraints are
given by

x ¼ Saþ r ¼
Xm

i¼1

aisi þ r;

Xm

i¼1

ai ¼ 1 and ai P 0 8i; ð1Þ

where x 2 Rn is the measured spectrum of an image pixel, S ¼ ðs1; . . . ; smÞ is an n�m matrix whose columns are the m end-
member spectra assumed to be affinely independent, the entries of a ¼ ða1; . . . ; amÞt are the corresponding abundances or
fractions of the endmember spectra present in x, and r represents a noise vector.

Endmembers may be obtained from spectral libraries for certain specific materials, or automatically from the image by a
variety of techniques [5,7,28,37,39,40]. Autonomous endmember detection has received wide attention since signatures of
various objects that may be present in an image are unknown before hand. Boardman [5] uses the framework of the geom-
etry of convex sets to identify the mþ 1 endmembers as the vertices of the smallest simplex that bounds the measured data.
However, the simplex vertices need not be image pixels and, hence, need not coincide with actual image data. Winter’s N-
FINDR method [39,40] is based on inflating a simplex within the data set to determine the largest simplex inscribed within
the data. This algorithm is computationally intensive since individual pixels need to be examined and simplex volume recal-
culated for each image pixel. Recent methods proposed by Nascimento-Bioucas [28] and Chang et al. [7] offer similar or fas-
ter performance with respect to the N-FINDR method and are based on convex optimization techniques [6]. The autonomous
endmember determination method proposed in this paper is also fast and carries little computational overhead. The method
is derived from examining a lattice based auto-associative memory that stores the hyperspectral image cube. Graña et al.,
were the first to propose the use of lattice based auto-associative memories for autonomous endmember determination
[15] as well as an evolutionary based strategy for endmember discrimination [16]. In the first approach, related to the pres-
ent work, they employed the notion of morphological independence which does not necessarily lead to finding an affinely
independent set of vectors that in some sense provides a maximal simplex within the data set. Furthermore, Graña’s algo-
rithm requires the user to choose a starting pixel and different starting pixels can produce different results. Improvements of
algorithms using the preceding approach are based on recent discoveries of algebraic properties inherent in lattice based
auto-associative memories [34] but the endmembers obtained need not be related with the hyperspectral image. The
WM method described here differs from those described by Graña [17,18] and Myers [26] as the endmembers we obtain
have a geometrical relationship to the pixels of the hyperspectral image under consideration. Our method will always pro-
vide the same sets of candidate endmembers based on theoretical facts given in this paper. To validate our proposed method,
a brief comparison is made against two new approaches based on convex optimization, namely vertex component analysis
[28] and the minimal volume enclosing simplex [7].

The paper is organized as follows. Section 2 introduces the reader to background concepts on binary lattice operations
with numbers, vectors and matrices. Lattice associative memories (LAMs) and their fundamental properties are discussed
in Section 3. The following three sections are devoted to the mathematical foundation that guarantees the correctness of
the proposed method. Specifically, Section 4 establishes the geometric description of the fixed point set of lattice auto-asso-
ciative memories. Section 5 establishes the relationships between the hyperspectral data cube, the corresponding LAMs and
their fixed point set. In Section 6, we present the theoretical results needed to prove the affine independence of the sets (or
proper subsets) of scaled column vectors derived from LAMs. Endmember determination using the WM method and con-
strained linear unmixing of hyperspectral images is presented in Section 7. Finally, a brief discussion about our proposed
method and some conclusions are provided in Section 8.

2. Lattice theory fundamentals

The computational concepts for the associative neural networks used in this manuscript are governed by the bounded lat-
tice ordered group ðR�1;_;^;þ;þ0Þ, where R denotes the set of real numbers, R�1 ¼ R [ f�1;1g;_ and ^ denote the binary
operation of maximum and minimum, respectively, + denotes addition, and þ0 denotes the dual operation of + defined by
aþ0b ¼ aþ b for any a 2 R. If a 2 R�1, then its additive conjugate is given by a� ¼ �a.

Unless stated otherwise, a vector x 2 Rn
�1 is always viewed as a column vector, i.e., x ¼ ðx1; . . . ; xnÞt , where xi 2 R�1 for

i ¼ 1; . . . ;n and t denotes the transpose. Scalar addition of a vector x 2 Rn
�1 is defined componentwise. That is, if a 2 R�1,

then aþ x ¼ ðaþ x1; . . . ; aþ xnÞt . The conjugate of x 2 Rn
�1 is defined as x� ¼ �xt . Given two vectors x; y 2 Rn

�1, then the max-
imum and minimum of x and y, denoted by x _ y and x ^ y, respectively, are defined componentwise as ðx _ yÞi ¼ xi _ yi and
ðx ^ yÞi ¼ xi ^ yi for i ¼ 1; . . . ;n. We note that the following duality De Morgan’s type identities hold: x _ y ¼ ðx� ^ y�Þ� and
x ^ y ¼ ðx� _ y�Þ�. The inequalities x 6 y and x < y mean that xi 6 yi and xi < yi, respectively, where i ¼ 1; . . . ;n. Thus, if
u ¼ x _ y and v ¼ x ^ y, then v 6 u.

As our application domain concerns only real valued vectors, we restrict our discussion to sets of vectors
X ¼ fx1; . . . ;xkg � Rn

�1 for which xn 2 Rn and n 2 K where K ¼ f1; . . . ; kg is a finite set of positive integers. With this
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