Information Sciences 181 (2011) 567-581

o

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins oo

A heuristic-based hybrid genetic-variable neighborhood search algorithm
for task scheduling in heterogeneous multiprocessor system

Yun Wen, Hua Xu *, Jiadong Yang

State Key Laboratory on Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Computer
Science and Technology, Tsinghua University, Beijing 100084, PR China

ARTICLE INFO

ABSTRACT

Article history:

Received 2 February 2010

Received in revised form 28 September
2010

Accepted 2 October 2010

Keywords:

Variable neighborhood search

Genetic algorithm

Hybrid metaheuristic

Memetic algorithm

Heterogeneous multiprocessor scheduling

Effective task scheduling, which is essential for achieving high performance in a heteroge-
neous multiprocessor system, remains a challenging problem despite extensive studies. In
this article, a heuristic-based hybrid genetic-variable neighborhood search algorithm is
proposed for the minimization of makespan in the heterogeneous multiprocessor schedul-
ing problem. The proposed algorithm distinguishes itself from many existing genetic algo-
rithm (GA) approaches in three aspects. First, it incorporates GA with the variable
neighborhood search (VNS) algorithm, a local search metaheuristic, to exploit the intrinsic
structure of the solutions for guiding the exploration process of GA. Second, two novel
neighborhood structures are proposed, in which problem-specific knowledge concerned
with load balancing and communication reduction is utilized respectively, to improve both
the search quality and efficiency of VNS. Third, the proposed algorithm restricts the use of
GA to evolve the task-processor mapping solutions, while taking advantage of an upward-

ranking heuristic mostly used by traditional list scheduling approaches to determine the
task sequence assignment in each processor. Empirical results on benchmark task graphs
of several well-known parallel applications, which have been validated by the use of
non-parametric statistical tests, show that the proposed algorithm significantly outper-
forms several related algorithms in terms of the schedule quality. Further experiments
are carried out to reveal that the proposed algorithm is able to maintain high performance
within a wide range of parameter settings.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

As a most promising approach to meet the rising computational requirements, parallel processing approach poses a num-
ber of problems not encountered in traditional sequential processing [9,23], the most important of which is the multipro-
cessor scheduling issue. In general, an originally large program can be decomposed into a set of smaller tasks prior to
parallel processing. These smaller tasks almost always have dependencies representing the precedence constraints, in which
the results of other tasks are required before a particular task can be executed. Hence, the goal of a task scheduling algorithm
is typically to schedule all the tasks on the given number of available processors so as to minimize the overall length of time
required to execute the entire program, namely makespan, without violating precedence constraints. Based on various
characteristics of the decomposed tasks to be scheduled and the multiprocessor system, as well as the availability of a priori
information regarding the processing time, the multiprocessor scheduling problem can be categorized into many different
classes [12,29]. In this article, only the static scheduling problem is addressed, in which all information needed for

* Corresponding author.
E-mail address: xuhua@mail.tsinghua.edu.cn (H. Xu).

0020-0255/$ - see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/.ins.2010.10.001


http://dx.doi.org/10.1016/j.ins.2010.10.001
mailto:xuhua@mail.tsinghua.edu.cn
http://dx.doi.org/10.1016/j.ins.2010.10.001
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

568 Y. Wen et al./Information Sciences 181 (2011) 567-581

scheduling, including task processing times, data dependencies, and communication costs between dependent tasks, are
known before program execution.

Given the NP-complete complexity for searching an optimal solution in its general form [40], the multiprocessor
scheduling problem remains an open field in spite of extensive studies. Traditional scheduling research focused on the heu-
ristic-based algorithms, an important class of which is the so-called list scheduling algorithms [29,38]. The basic idea of list
scheduling consists in maintaining an ordered list of tasks by assigning priority for each task according to some greedy heu-
ristics. Tasks are then selected in the order of their priorities and the highest-priority ready task is removed from the list to
be assigned to a processor which allows the earliest start time. Traditional list scheduling algorithms usually assume a
homogeneous multiprocessor system in which all processors are of the same processing ability and fully connected
[2,41], while recent studies have been diverted to task scheduling for heterogeneous multiprocessor systems where the exe-
cution time of a task may vary among different processors [38]. The heuristic-based scheduling algorithms are always effi-
cient since they narrow the search down to a very small portion of the solution space by means of greedy heuristics.
However, due to the greedy nature, heuristic-based approaches are not likely to produce consistent results on a wide range
of problems, especially when the complexity of the scheduling problem increases.

In attempts to obtain schedules of better quality, many well-known metaheuristics, including genetic algorithm (GA)
[1,6,8,21,33,37,42], artificial immune system (AIS) [44], ant colony optimization (ACO) [5], particle swarm optimization
(PSO) [34], simulated annealing (SA) [26], tabu search (TS) [36], and variable neighborhood search (VNS) [32], have been
adopted. Generally, metaheuristics can be divided into trajectory methods (also named local search heuristics) and popula-
tion-based methods. Population-based methods deal with a set of solutions in every iteration of the algorithm while trajec-
tory methods only deal with a single solution [3]. As one of the most studied population-based methods, GA shows robust
performance with various scheduling problems, for it has a powerful global exploration ability of concurrently tracking a set
of solutions. Plenty of empirical results demonstrate that GA-based methods always outperform traditional heuristic-based
scheduling algorithms regarding the schedule quality [6,21,42]. However, GA usually takes more computing efforts to locate
the optimal in the region of convergence [42], owing to the lack of local search ability. On the other hand, the trajectory
method, such as VNS [10], has shown its potential in exploiting the promising regions in the search space with high quality
solutions. Nevertheless, it is still prone to premature convergence traps due to the limited exploration ability. Thus, it’s a
natural choice to consider the hybridization of metaheuristics, also named memetic algorithm (MA) in some literatures
[27], which has recently been applied to solve scheduling problems [4].

The approach proposed in this article is largely inspired by the fact that each type of scheduling technique has its own
strengths and weaknesses while appearing that they are complementary to each other. This paper attempts to present a no-
vel heuristic-based hybrid genetic-variable neighborhood search (GVNS) algorithm for solving the heterogeneous multipro-
cessor scheduling problem, which improves upon the standard GA in three aspects. First, the proposed algorithm
incorporates GA and VNS to obtain a balance between the exploration and exploitation of the search space, which is crucial
to the success of metaheuristics. Next, two common scheduling strategies, load balancing and communication reduction, are
utilized in our proposed neighborhood structures in VNS, which further improves the local search efficiency. Finally, unlike
many existing GA approaches which directly use GA to evolve the priorities of the tasks that in turn determine the final sche-
dule solution, the proposed GVNS restricts the use of GA and VNS to find optimal task-processor mapping while leaving the
task sequence assignment to an upward-ranking heuristic originally used in HEFT [38], a list scheduling algorithm.

In the next section, a formal statement of the studied heterogeneous multiprocessor scheduling problem is provided. Sec-
tion 3 introduces some existing related researches on the multiprocessor scheduling problem. Section 4 presents the various
features of the proposed GVNS. The benchmark problems, parameter settings, experimental results and analysis are ex-
plained in Section 5. Finally, conclusions and suggestions for future research are drawn in Section 6.

2. Problem formulation

The static multiprocessor scheduling problem is typically given by two inputs: a multiprocessor system in which tasks
can be solved and a parallel program to be computed. Generally, the target multiprocessor system is composed of a network
of processors, each of which has a local memory so that inter-processor communications rely solely on message-passing [29].
In this paper, the studied multiprocessor system model is assumed to be with the following characteristics: (1) heteroge-
neous; (2) non-preemptive; (3) fully connected network; (4) communication links with uniform bandwidth; (5) task dupli-
cation is NOT allowed; (6) each processor has an independent I/O unit that allows for communication and computation to be
performed simultaneously.

Meanwhile, the parallel program is typically decomposed into smaller tasks with precedence constraints, which are de-
scribed as a directed acyclic graph (DAG). In general, a DAG G = (V,E) consists of a set V of v nodes and a set E of e edges. A
node in the DAG represents a decomposed task, which must be executed sequentially without preemption in the same pro-
cessor. Hereafter, the terms node and task will be used interchangeably. The computation cost of a particular task n; € V on
the processor p; is denoted as w;;. Each edge e;; € E represents precedence constraints between task n; and n;, which means
that the result of task n; has to be transmitted to task n; before task n; starts its execution. Each edge e;; € E is associated with
a nonnegative weight ¢;; representing the communication cost between the interdependent tasks n; and n;. Note that the real
communication cost is equal to zero when the interdependent pair of tasks are assigned to the same processor. The source



Download English Version:

https://daneshyari.com/en/article/394932

Download Persian Version:

https://daneshyari.com/article/394932

Daneshyari.com


https://daneshyari.com/en/article/394932
https://daneshyari.com/article/394932
https://daneshyari.com

