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a b s t r a c t

In this paper, we study hybrid fuzzy differential equation initial value problems (IVPs). We
consider the problem of finding their numerical solutions by using a recent characteriza-
tion theorem of Bede for fuzzy differential equations. We prove a corollary to Bede’s char-
acterization theorem and give a characterization theorem for hybrid fuzzy differential
equation IVPs. Then we prove that any suitable numerical method for ODEs can be applied
piecewise to numerically solve hybrid fuzzy differential equation IVPs. Numerical exam-
ples are provided which connect the new results with previous findings.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

The differential calculus of fuzzy-valued functions was examined by Dubois and Prade [7] and Puri and Ralescu [15]. Sub-
sequently, fuzzy differential equations were considered by many papers including [8,18,5]. Numerical techniques were
developed in [11,1–3] and others. In [4], Bede proved a characterization theorem which states that under certain conditions
a fuzzy differential equation IVP is equivalent to a system of ordinary differential equations. Bede also remarked that this
characterization theorem can help to numerically solve fuzzy differential equation IVPs by converting them to systems of
ODEs which can then be solved by any suitable numerical method for ODEs. More specifically, in [4], Bede wrote, ‘‘in order
to obtain numerical solutions of fuzzy differential equations under Hukuhara differentiability, it is not necessary to rewrite
the whole literature on numerical solutions of ODEs in the fuzzy setting, but instead we can use any numerical method for
the ODEs directly”.

Also receiving much attention in the recent literature are hybrid systems. Hybrid systems evolve in continuous time like
differential systems but undergo fundamental changes in their governing equations at a sequence of discrete times. When
the continuous time dynamics of a hybrid system is given by fuzzy differential equations the system is called a hybrid fuzzy
differential system. For analytical results on hybrid fuzzy differential equations, see [9,17,10]. Pederson and Sambandham
[12,13] study the Euler and Runge–Kutta numerical methods, respectively for hybrid fuzzy differential equations. In some
sense, Pederson and Sambandham [12,13] ‘‘rewrite the whole literature on numerical solutions of ODEs” in the hybrid fuzzy
setting, focusing on the Euler and Runge–Kutta methods, respectively. In contrast, the contribution of this paper is to extend
Bede’s characterization theorem to hybrid fuzzy differential equations and then use this result to numerically solve these
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systems by any suitable method for ODEs. The importance of converting a hybrid fuzzy differential equation IVP to a hybrid
system of ODEs is that then any suitable numerical method for ODEs may be implemented. This paper shows that it is not
necessary to restrict attention to one particular method such as the Euler method [12] or the Runge–Kutta method [13] when
considering hybrid fuzzy differential equation IVPs.

This paper is organized as follows. In Section 2, we provide some background on fuzzy numbers and fuzzy differential
equations. We also prove a corollary to Bede’s characterization theorem. In Section 3, we review the hybrid fuzzy differen-
tial equation IVPs and give a characterization theorem for hybrid fuzzy differential equation IVPs. In Section 4, we prove
that one-step explicit numerical methods for ODEs which are numerically stable can be applied piecewise to numerically
solve hybrid fuzzy differential equation IVPs. In Section 5, we present numerical examples based on examples in
[11,3,12,13].

2. Preliminaries

First we review some standard results about fuzzy numbers. Let E1 denote the set of all functions u : R! ½0;1� such that u
satisfies (i)–(iv):

(i) u is normal (there exists an x0 2 R such that uðx0Þ ¼ 1),
(ii) u is fuzzy convex (for x; y 2 R and k 2 ½0;1�;uðkxþ ð1� kÞyÞP minfuðxÞ;uðyÞg),

(iii) u is upper semicontinuous,
(iv) ½u�0, the closure of fx 2 R : uðxÞ > 0g, is compact.

For 0 < a 6 1, define the a-level set ½u�a ¼ fx 2 R : uðxÞP ag. Let PKðRÞ denote the collection of all nonempty compact,
convex subsets of R. Then the a-level sets ½u�a are in PKðRÞ for 0 6 a 6 1. Let dHðA;BÞ be the Hausdorff distance between sets
A;B 2 PKðRÞ. Then

dðu;vÞ ¼ sup
06a61

dHð½u�a; ½v �aÞ

is a metric in E1 and ðE1; dÞ is a complete metric space (by results in [6,16]).
For x; y 2 E1 if there exists a z 2 E1 such that x ¼ yþ z, then z is called the H-difference of x and y and is denoted by x� y. A

mapping F : I ! E1 is differentiable at t 2 I if there exists a F 0ðtÞ 2 E1 such that the limits (taken in the metric space ðE1; dÞ)

lim
h!0þ

Fðt þ hÞ � FðtÞ
h

and lim
h!0þ

FðtÞ � Fðt � hÞ
h

exist and both equal F 0ðtÞ. See [8,10] for details.
For u 2 E1 and r 2 ½0;1�, let ½u�r ¼ ½ur

�;u
r
þ�. Next we review one of the main results from Bede [4] (let k � k denote the usual

Euclidean norm).

Theorem 2.1 [4]. Let us consider the fuzzy initial value problem (FIVP)

x0 ¼ f ðt; xÞ;
xðt0Þ ¼ x0;

�
ð2:1Þ

where f : ½t0; t0 þ a� � E1 ! E1 is such that

(i) ½f ðt; xÞ�r ¼ ½f r
�ðt; xr

�; x
r
þÞ; f r

þðt; xr
�; x

r
þÞ�;

(ii) f r
� and f r

þ are equicontinuous (that is, for any � > 0 there is a d > 0 such that jf r
�ðt; x; yÞ � f r

�ðt1; x1; y1Þj < � for all r 2 ½0;1�,
whenever ðt; x; yÞ; ðt1; x1; y1Þ 2 ½t0; t0 þ a� � R2 and kðt; x; yÞ � ðt1; x1; y1Þk < d) and uniformly bounded on any bounded set,

(iii) there exists an L > 0 such that

jf r
�ðt; x1; y1Þ � f r

�ðt; x2; y2Þj 6 L maxfjx2 � x1j; jy2 � y1jg for all r 2 ½0;1�:

Then the FIVP (2.1) and the system of ODEs

ðxr
�ðtÞÞ

0 ¼ f r
�ðt; xr

�ðtÞ; xr
þðtÞÞ;

ðxr
þðtÞÞ

0 ¼ f r
þðt; xr

�ðtÞ; xr
þðtÞÞ;

xr
�ðt0Þ ¼ ðx0Þr�;

xr
þðt0Þ ¼ ðx0Þrþ

8>>><
>>>:

ð2:2Þ

are equivalent.

Next we prove a corollary to Theorem 2.1 of [4]. The purpose of Corollary 2.2 below is not to make an essential improve-
ment of Theorem 2.1 but rather to give alternate conditions under which the FIVP (2.1) and the system of ODEs (2.2) are
equivalent.
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