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Synthesis of phase pure CosMosN and FesMosN by temperature programmed ammonolysis has been
established by XRD and elemental analysis. The ternary nitrides are characterised by a m-6 structure
and low surface area (4-9m? g—'). Pseudomorphic transformation of cobalt molybdate prepared using
cobalt nitrate generated rod-shaped crystals while the use of iron chloride resulted in FesMosN aggre-
gates with irregular morphology and wide size distribution. XPS measurements have revealed surface N
enrichment relative to the bulk where the passivated samples show a range of oxidation states; CosMosN

!F(gr‘:‘;or;drsl:itrides exhibited Mo?* and Co™ (0 < n < 3) whereas FesMo3zN was characterised by higher oxidation states (Fe3*
CosMosN and Mo?*). Temperature programmed reduction (TPR) to 823 K served to remove the passivation layer
FesMosN where subsequent H, chemisorption and temperature programmed desorption (TPD) has demonstrated

greater uptake on Fe;MosN relative to CosMosN, resulting in a higher nitrobenzene hydrogenation rate
(to aniline). FesMosN promoted selective reduction of -NO; in p-chloronitrobenzene to generate p-
chloroaniline as sole product whereas CosMos N favoured C-Cl scission with the formation of nitrobenzene
(in addition to p-chloroaniline). Hydrodechlorination properties were further established for CosMosN
in the conversion of chlorobenzene (to benzene) under conditions where FesMo3N was inactive. A tem-
poral deactivation of both nitrides is associated with Cl poisoning of Co3MosN and structural changes to
FesMosN.

Selective hydrogenation
Hydrodechlorination

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

It is established that nitrides of early transition metals (Groups
IV-VI) exhibit interesting catalytic properties [1-4]. This has been
attributed to hybridisation of the nitrogen p- and metal d-orbitals,
resulting in an electronic structure with a Fermi energy close
to that of Group VIII metals [1]. Studies to date have focused
on binary nitrides such as W,N [5], TiN [6], VN [7] and Mo;N
[4]. Ternary nitride systems are divided into two groups, i.e.
metallic and covalent/ionic. The former represents catalytically
active systems in which metal-metal interactions are dominant
and N atoms are interstitial within the metal array. The cat-
alytic properties of ternary Mo nitrides have been investigated
to a limited extent, largely due to difficulties in synthesising
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a pure phase that circumvents concomitant formation of Mo;N
and the second metal [8]. As Co3MosN has been identified as
effective in hydrotreatment, the synthesis and catalytic appli-
cation of intermetallic ternary Mo-nitride systems is receiving
renewed attention [9,10]. The catalytic action of Co-Mo, Fe-Mo
and Ni-Mo nitrides has been studied in NH3 synthesis [10-14],
pyridine [15,16] and quinoline [17] hydrodenitrogenation (HDN),
thiophene [8,18-20] and dibenzothiophene [17,21] hydrodesulfu-
risation (HDS) and NO reduction [22,23]. The incorporation of a
second metal has resulted in higher activity relative to the binary
system (Mo,N) [8,9,11-13,18,20,23]. In NH3 synthesis [11-13],
the increased activity has been correlated with energetics of N,
adsorption/activation, which is a function of the second metal and
follows the order Co3Mo3sN > FesMosN > Ni;Mo3sN>Mo-N. In pyri-
dine HDN, Chuetal.[15] proposed that H; is activated on the second
metal and migrates to Mo sites, leading to HDN activity/selectivity
that is distinct from the binary nitride.

Co3Mos3N and Fe3MosN are characterised by a face centred cubic
(fcc) arrangement of the metal (Co and Mo or Fe and Mo) atoms
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with the lattice nitrogen occupying octahedral interstitial sites
[24,25]. These nitrides are typically synthesised by temperature
programmed nitridation of a bimetallic oxide precursor, obtained
from a combination of metal nitrate (or chloride) with ammo-
nium heptamolybdate (or sodium molybdate) [8,14,23-26]. The
precursors (e.g. CoMo0,4.nH,0 and FeMoOg4) can be nitrided in a
flow of NH3 with temperature ramping to 873-1073 K [25,27]. The
effects of precursor [13,28,29], nitridation (gas composition and
final temperature) [30] and activation conditions [26,29] on nitride
structure have been the subject of studies directed at optimising
synthesis. While ternary Mo nitrides have shown activity in hydro-
gen mediated reactions (HDN, NO reduction and NH3 synthesis)
[28], there has been no reported application in hydrogenation. We
can, however, flag studies that have established Mo;N catalytic
action in the hydrogenation of crotonaldehyde [31], ethyne [32]
and nitroarenes [33,34]. Taking the latter, selective hydrogena-
tion of p-chloronitrobenzene to p-chloroaniline is commercially
important in the manufacture of polymers, dyes and agrochem-
icals [35]. Reaction over conventional metal (Pt [36] and Pd
[37]) catalysts generates by-products resulting from hydrodeam-
ination (chlorobenzene) and hydrodechlorination (nitrobenzene)
with subsequent hydrogenation (aniline), as shown in Fig. 1.
Work has focused on batch liquid phase operation [38] but we
have demonstrated that reaction over Mo,N in continuous gas
phase delivers p-chloroaniline as the sole product [39]. Reactant
adsorption/activation can be influenced by the degree of nitri-
dation and (nitrogen deficient) Mo nitride site density [40,41],
Mo oxidation state [42] and crystallographic phase ([3- vs. y-
Mo;N) [43]. The goal of this study is to probe the catalytic
hydrogenation properties of bimetallic nitrides, taking Co3Mo3sN
and FesMosN as iso-structural stable ternary systems, employing
p-chloronitrobenzene — p-chloroaniline as a model reaction.

2. Experimental
2.1. Catalyst preparation

In the synthesis of CosMosN, the molybdate precursor was
prepared by combining aqueous solutions of cobalt nitrate
(Co(NO3),-6H,0, Sigma-Aldrich, >98%) and ammonium hep-
tamolybdate ((NH4)6Mo70,4-4H,0, Sigma-Aldrich, 81-83% as
MoO3) and heating to 353K for 3h. In the case of FesMosN,
the molybdate precursor was synthesised by drop-wise addition
of 400cm3 0.25M FeCl,-4H,0 (Sigma-Aldrich, >99%) to 0.66 M
Nay;Mo04-2H,0 (Sigma-Aldrich, >99%). After vacuum filtration,
the precipitate was washed twice with distilled water, once with
ethanol and dried overnight at 393 K. The powders were calcined
in air (Co-Mo) or N, (Fe-Mo) for 5h at 773 K. The CoMoO4-nH,0
or FeMoOy4 obtained was loaded into a vertical quartz reactor (i.d.
10.5 mm) for nitridation by ammonolysis. A 94 cm3 min~! flow of
NH3 (BOC, 99.98%) was introduced to the reactor with temperature
ramping over three stages using a temperature ramp rate procedure
based on that adopted in previous studies [26] and optimised to
generate high quality phase pure materials in our reactor, i.e. from
ambient to 630K (at 5.6 Kmin~1), then to 720K (at 0.5 Kmin~1)and
finally to 1058 K (at 2.1 Kmin~'), which was maintained for 5 h. The
nitrided sample was cooled to ambient temperature in flowing NH3,
followed by a purge in N; to remove any residual NHs. In order to
prevent pyrolysis on exposure to air, the material was passivated
in 100 cm3 min~1 0,/N; (v/v 0, <0.1%) overnight.

2.2. Catalyst characterisation

The nitrogen content of Co3sMosN and FesMosN was deter-
mined using an Exeter CE-440 Elemental Analyser after sample
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Fig. 1. Reaction pathways for the hydrogenation of p-chloronitrobenzene to the
target p-chloroaniline (p-CAN, = ), the observed by-product (nitrobenzene (NB),
—) and reaction products (chlorobenzene (CB) and aniline (AN), -=-% ) reported in
the literature.

combustion at ca. 1873 K. Temperature programmed reduction
(TPR), Hp chemisorption and temperature programmed desorp-
tion (TPD) measurements were performed using the commercial
CHEM-BET 3000 (Quantachrome) unit. The passivated samples
were loaded into a U-shaped Quartz cell (10cm x 3.76 mm i.d.)
and heated in 17 cm3 min~! (Brooks mass flow controlled) 5%
(v/v) Hy/Ny at 2Kmin~! to 823 K. The effluent gas passed through
a liquid N, trap and changes in H, consumption were moni-
tored by TCD with data acquisition/manipulation using the TPR
Win™ software. The final temperature was maintained (in a
constant flow of Hy/N,) until return of the signal to baseline,
samples were swept with 65cm3 min~!N; for 1.5h and cooled
to ambient temperature. The nitrides were then subjected to H,
chemisorption using a pulse (10 ) titration procedure, followed
by H,-TPD in N; (65cm3 min~!) at 50 Kmin~! to 973K with an
isothermal hold until the signal returned to the baseline. Nitro-
gen adsorption-desorption isotherms were obtained at 77 K using
the commercial Micromeritics Gemini 2390 automated unit. Spe-
cific surface areas were calculated from the isotherms using the
standard BET method. Average pore size and cumulative pore vol-
ume were obtained from BJH analysis of the desorption isotherms;
samples were outgassed at 423K in N, for 1h prior to analy-
sis.

Powder X-ray diffractograms were recorded on a
Bruker/Siemens D500 incident X-ray diffractometer using Cu
Ko radiation. The samples were scanned at 0.02° step~! over
the range 15° <20 <85°. Diffractograms were identified using
the JCPDS-ICDD reference standards for CosMo3N (89-7953) and
FesMo3N (89-7952). Crystal size (dpy) was estimated using the
Scherrer equation, assuming negligible contribution from strain
and instrumental broadening to reflection widths

dovr — K x A
hkt = "8~ cos @

(1)

where K=0.9 radians, A is the incident radiation wavelength
(1.5056A), B is the peak width at half the maximum intensity
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