
A parallel ant colony algorithm on massively parallel processors and
its convergence analysis for the travelling salesman problem

Chen Ling a,b,⇑, Sun Hai-Ying a, Wang Shu a

a Department of Computer Science and Engineering, Yangzhou University, Yangzhou 225009, China
b State Key Lab of Novel Software Tech, Nanjing University, Nanjing 210093, China

a r t i c l e i n f o

Article history:
Received 1 February 2009
Received in revised form 5 October 2011
Accepted 26 February 2012
Available online 5 March 2012

Keywords:
Ant colony optimisation
Parallel processing
Convergence
Travelling salesman problem

a b s t r a c t

An adaptive parallel ant colony optimisation (PACO) algorithm on massively parallel pro-
cessors (MPPs) is presented. In the algorithm, we propose a strategy for information
exchange between processors that makes each processor choose a partner to communicate
with and update their pheromone adaptively. We also propose a method of adaptively
adjusting the time interval for the exchange of information according to the diversity of
the solutions, to increase the quality of the optimisation results and to avoid early conver-
gence. The analysis and proof of the convergence of the PACO algorithm is presented.
Experimental results of the TSP confirm our theoretical conclusions and show that our
PACO algorithm has a high convergence speed, high speedup and high efficiency.

� 2012 Published by Elsevier Inc.

1. Introduction

Ant colony optimisation (ACO) is an evolutionary-based optimisation algorithm [15] that was proposed by Dorigo et al.
[13,14]. ACO belongs to the class of biologically inspired heuristics [4,23,29,34]. It imitates the cooperative behaviour of ant
colonies to solve combinatorial optimisation problems. Using very simple communication mechanisms, a group of real ants
is able to find the shortest path between any two points. During their trips, a chemical trail called a pheromone is left on the
ground. The role of this trail is to guide the other ants towards their destination. For each ant, the path is chosen according to
the quantity of pheromone. Furthermore, this chemical substance has a decreasing action over time, and the quantity left by
one ant depends on the amount of food found and the number of ants following this trail. Inspired by this effect of a real ant
colony, Dorigo et al. [13,14] used artificial ants in ACO to emulate real ants in the process of seeking food and exchanging
information. ACO has achieved widespread success in solving different optimisation problems such as TSP [26], machine
learning and reasoning [32], sequential ordering [17], job-shop scheduling [5,35], network design [42], frequency assign-
ment [27], network routing [24], data mining [7,9,18,25], digital IIR filter designing [22], robotics [30] and other combina-
tional optimisation problems [8,20,36,37].

The availability of parallel architectures at low cost has increased the amount of interest in the parallelisation of ACO.
Though ACO usually determines a satisfactory solution for a problem within a reasonable amount of time, it becomes more
difficult to speed up the algorithm when the complexity of the problem increases. ACO algorithm has intrinsic parallelism,
which is very suitable for implementation on large-scale parallel computers.

To parallelise the ant colony algorithm, it is more important to modify the structure of ACO to obtain a better optimisation
effect than to re-implement the sequential ACO into a parallelisation schema. The modification of the ant colony structure to

0020-0255/$ - see front matter � 2012 Published by Elsevier Inc.
doi:10.1016/j.ins.2012.02.055

⇑ Corresponding author at: Department of Computer Science and Engineering, Yangzhou University, Yangzhou 225009, China. Tel.: +86 514 87978320;
fax: +86 514 87887937.

E-mail address: lchen@yzcn.net (L. Chen).

Information Sciences 199 (2012) 31–42

Contents lists available at SciVerse ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins

http://dx.doi.org/10.1016/j.ins.2012.02.055
mailto:lchen@yzcn.net
http://dx.doi.org/10.1016/j.ins.2012.02.055
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins


fit the parallel computational model involves three aspects: (1) dividing a single ant colony of a sequential ACO into several
mutually independent subordinate colonies; (2) controlling and managing the information exchange between the sub col-
onies; and (3) determining the time interval for the information exchange between the sub ant colonies. Different methods
of colony dividing and information exchange produce different parallel ant colony algorithms. Our goal in parallelisation is to
obtain a high speedup and efficiency while the convergence and optimisation quality are maintained or even improved.

Some results on parallel ant colony algorithms have been reported recently [1,3,6,10–12,16,26,28,31,33,39,41]. When
developing parallel ant colony algorithms, intuition suggests the adoption of the ‘‘island model’’ approach from parallel ge-
netic algorithms, where the exchange of information plays a major role. Solutions, pheromone matrices, and parameters
have been tested as the objects of such exchanges. Ellabib et al. [16] proposed three different strategies, which are based
on a weighting scheme. They also developed a search assessment technique based on a team consensus methodology to
study the influence of these strategies on the search behaviour. Manfrin et al. [26] studied the impact of communication
when parallelising a high-performing ACO algorithm for the travelling salesman problem using message-passing libraries.
Specifically, they examined synchronous and asynchronous communications on different interconnection topologies. Antony
et al. [1] introduced an asynchronous parallel Max–Min ant colony algorithm that is associated with a local search strategy.
Their algorithm was tested on the TSP using the parallel computer Cray-T3E. Randall [31] introduced a synchronous parallel
strategy that assigns only one ant on each processor. By modifying the classical ACO, Merkle [28] first proposed a parallel ant
colony algorithm on reconfigurable processor arrays. The running time of the algorithm is quasi-linear with the problem size
n and the number of ants on a reconfigurable mesh with n2 processors. Blum and Dorigo [6] advanced a parallel ant colony
algorithm on the hyper-cube architecture by modifying the rule of updating the pheromone by limiting the pheromone val-
ues within the range of [0,1]. This new approach enhances the ability of the ant colony algorithm to address complicated
objective functions theoretically and practically. In [41], Yang and Yu presented a coarse-grain parallel ant colony algorithm
for bus network design. They developed a new pheromone-updating strategy called ant-weight, which can adaptively adjust
the ants’ path-searching activities based on the objective function. Benkner et al. [3] analysed communication strategies in
parallel ACO and concluded that the communication of the whole pheromone matrix leads to worse solution quality as well
as more runtime, while the exchange of best-so-far and elite solutions produces the most optimum best results with respect
to the solution quality.

To parallelise the ant colony algorithm, the most important factors are the pattern and the time interval for the informa-
tion exchange between the processors. These factors affect not only the convergence speed of the algorithm but also its opti-
misation performance. In the algorithms of [1,16,26,31,40], the globally best solution is computed and broadcasted to all of
the processors in the information exchange. Then, every processor updates the pheromone matrix according to the best solu-
tion. This method of information exchange could probably create some similar solutions across different processors, which
cause large amounts of pheromones on some trails. These trails could be considered to be the ‘‘optimum solution’’ and thus
reduce the search diversity and efficiency of the processors. In addition, in the algorithms of [1,16,26,31], the processors ex-
change information in a constant time interval. Although paper [16] acknowledged that this constant time interval for infor-
mation exchange could affect the optimisation speed, the diversity of the solutions and the convergence of the algorithm, the
detailed analysis of the effect and a strategy for improvement have not been provided. Because this constant time interval for
information exchange does not take the distribution of the solutions into account, it may influence the diversity of the solu-
tions and the convergence speed. Because of the overhead that is caused by synchronisation and communication, the parallel
algorithms mentioned above are not efficient, and their speed of convergence and performance could be improved.

In this paper, we present an efficient adaptive parallel ant colony optimisation algorithm (PACO). We also propose a strat-
egy for information exchange between processors, which makes each processor choose its partner to communicate and up-
date the pheromone adaptively. To increase the optimisation ability and to avoid early convergence, we also propose a
method of adaptively adjusting the time interval according to the diversity of the solutions. Convergence of the parallel
ant colony algorithm is analysed and proved. These techniques are applied to the travelling salesman problem on the mas-
sively parallel processor (MPP) system of Shenteng 1800. Experimental results confirm our theoretical conclusions and show
that our PACO algorithm has a high convergence speed, high speedup and high efficiency.

The remainder of the paper is organised as follows. In Section 2, we illustrate the architecture of massively parallel pro-
cessors (MPPs). Section 3 presents the framework of the parallel ant colony algorithm PACO on MPPs. Inter-processor infor-
mation exchange strategies are proposed in Section 4. In Section 5, we analyse and prove the convergence of PACO.
Experimental results are shown and analysed in Section 6. Section 7 concludes the paper.

2. Massively parallel processors

Our parallel ant colony algorithm is based on the computational model of massively parallel processors (MPPs), which
adopt the message-passing method. The architecture of a typical MPP systems is shown in Fig. 1.

All MPP systems [21] use physically distributed memory and some distributed I/O. The whole system consists of a num-
ber of processing nodes. Each node has a processor/cache (P/C) and a local memory (LM). There is a local interconnection
within a node that connects processors, memories, and I/O devices. Each node is connected to the network through network
interface circuitry (NIC). An MPP system has several features, as follows: (1) A commercialised microprocessor in each pro-
cessing node, and one or more microprocessors in each node; (2) Physically distributed memory, namely, each node has its

32 L. Chen et al. / Information Sciences 199 (2012) 31–42



Download	English	Version:

https://daneshyari.com/en/article/395046

Download	Persian	Version:

https://daneshyari.com/article/395046

Daneshyari.com

https://daneshyari.com/en/article/395046
https://daneshyari.com/article/395046
https://daneshyari.com/

