
Routine high-return human-competitive automated problem-solving
by means of genetic programming

John R. Koza a,*, Matthew J. Streeter b, Martin A. Keane c

a Stanford University, Post Office Box K, Los Altos, CA 94023, United States
b Genetic Programming Inc., 990 Villa Street, Mountain View, California 94041, United States
c Econometrics Inc., 1300 North Lake Shore No. 22B, Chicago, Illionois, United States

a r t i c l e i n f o

Keywords:
Genetic programming
Evolutionary computation
Automated design
Automated invention
Patented inventions
Controllers
Analog circuits

a b s t r a c t

Genetic programming is a systematic method for getting computers to automatically solve
problems. Genetic programming starts from a high-level statement of what needs to be
done and automatically creates a computer program to solve the problem by means of a
simulated evolutionary process. The paper demonstrates that genetic programming (1)
now routinely delivers high-return human-competitive machine intelligence; (2) is an
automated invention machine; (3) can automatically create a general solution to a problem
in the form of a parameterized topology and (4) has delivered a progression of qualitatively
more substantial results in synchrony with five approximately order-of-magnitude
increases in the expenditure of computer time. These points are illustrated by a group of
recent results involving the automatic synthesis of the topology and sizing of analog elec-
trical circuits, the automatic synthesis of placement and routing of circuits, and the auto-
matic synthesis of controllers as well as references to work involving the automatic
synthesis of antennas, networks of chemical reactions (metabolic pathways), genetic net-
works, mathematical algorithms, and protein classifiers.

� 2008 Published by Elsevier Inc.

1. Introduction

One of the central challenges of computer science is to get a computer to solve a problem without explicitly programming
it to do so. Paraphrasing Arthur Samuel—founder of the field of machine learning—this challenge [20] concerns:

How can computers be made to do what needs to be done, without being told exactly how to do it?

In his 1983 talk entitled ‘‘AI: Where It Has Been and Where It Is Going,” Samuel [21] provided a criterion for success in
achieving the goal by saying:

‘‘[T]he aim [is]. . .to get machines to exhibit behavior, which if done by humans, would be assumed to involve the use of
intelligence.”

Genetic programming starts from a high-level statement of what needs to be done and automatically creates a computer
program to solve the problem. Genetic programming uses the Darwinian principle of natural selection and analogs of recom-
bination (crossover), mutation, gene duplication, gene deletion, and certain mechanisms of developmental biology to pro-
gressively breed an improved population over a series of many generations.

0020-0255/$ - see front matter � 2008 Published by Elsevier Inc.
doi:10.1016/j.ins.2008.07.028

* Corresponding author. Tel.: +1 650 941 0336; fax: +1 650 941 9430.
E-mail addresses: koza@stanford.edu (J.R. Koza), matt@genetic-programming.com (M.J. Streeter), mak@sportsmrkt.com (M.A. Keane).

Information Sciences 178 (2008) 4434–4452

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins

mailto:koza@stanford.edu
mailto:matt@genetic-programming.com
mailto:mak@sportsmrkt.com
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins


This paper makes four points:

(1) Genetic programming (described briefly in Section 2) now routinely delivers high-return human-competitive machine
intelligence (Section 3).

(2) Genetic programming is an automated invention machine (Section 4).
(3) Genetic programming can automatically create a general solution to a problem in the form of a parameterized topol-

ogy (Section 5).
(4) Genetic programming has delivered a progression of qualitatively more substantial results in synchrony with five

approximately order-of-magnitude increases in the expenditure of computer time (Section 6).

These points are illustrated by a group of recent results involving the automatic synthesis of:

� both the topology and sizing of analog electrical circuits (Section 7),
� placement and routing (i.e., layout) of circuits (performed automatically and simultaneously with the synthesis of the cir-

cuit’s topology and sizing) (Section 8),
� automatic synthesis of parameterized topologies for a general-purpose controller (Section 9),
� automatic synthesis of parameterized topologies containing conditional developmental operators (Section 10), and
� automatic synthesis of antennas, mathematical algorithms, classifiers of protein sequences, networks of chemical reac-

tions (metabolic pathways), and genetic networks (Section 11).

2. Background on genetic programming

Genetic programming starts with a high-level description of ‘‘what needs to be done” and automatically executes an iter-
ative procedure in an attempt to create a computer program that does what is required [9–16].

The preparatory steps for a run of genetic programming are the problem-specific and domain-specific steps that are per-
formed by the human user prior to launching a run. The executional steps are the problem-independent and domain-inde-
pendent steps that are automatically executed during the run.

2.1. Preparatory steps

Prior to launching a run of genetic programming, the human user communicates the nature of the to-be-solved problem
to the genetic programming system by means of preparatory steps.

The five major preparatory steps for genetic programming entail determining:

(1) the set of terminals (e.g., the independent variables of the problem, zero-argument functions, and random constants)
available to each branch of the to-be-evolved computer program,

(2) the set of primitive functions available to each branch of the to-be-evolved computer program,
(3) the fitness measure (for explicitly or implicitly measuring the fitness of individuals in the population),
(4) certain parameters for controlling the run, and
(5) a termination criterion and method for designating the result of the run.

2.2. Executional steps

Genetic programming starts with thousands of randomly created computer programs and uses the Darwinian principle of
natural selection and analogs of recombination (crossover), mutation, gene duplication, gene deletion, and certain mecha-
nisms of developmental biology to iteratively breed an improving population.

Genetic programming breeds computer programs to solve problems by executing the following three steps:

(1) Generate an initial set (called the population) of compositions (typically random) of functions and terminals appropri-
ate to the problem.

(2) Iteratively perform the following substeps (a generation) on the population of programs until the termination criterion
has been satisfied:
(A) Execute each program in the population and assign it a fitness value using the problem’s fitness measure.
(B) Create a new population (the next generation) of programs by applying the following operations (called genetic

operations) to program(s) selected from the population with a probability based on fitness (with reselection
allowed):

(i) Reproduction: Copy the selected program to the new population.
(ii) Crossover: Create a new offspring program for the new population by recombining randomly chosen parts

of two selected programs.
(iii) Mutation: Create one new offspring program for the new population by randomly mutating a randomly

chosen part of the selected program.

J.R. Koza et al. / Information Sciences 178 (2008) 4434–4452 4435



Download	English	Version:

https://daneshyari.com/en/article/395881

Download	Persian	Version:

https://daneshyari.com/article/395881

Daneshyari.com

https://daneshyari.com/en/article/395881
https://daneshyari.com/article/395881
https://daneshyari.com/

