Information Sciences 179 (2009) 3659-3672

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins s

Necessary and sufficient conditions for transaction-consistent global
checkpoints in a distributed database system

Jiang Wu?, D. Manivannan **, Bhavani Thuraisingham”

2 Department of Computer Science, University of Kentucky, Lexington, KY 40506, United States
b Department of Computer Science, University of Texas at Dallas, United States

ARTICLE INFO ABSTRACT
Article history: Checkpointing and rollback recovery are well-known techniques for handling failures in
Received 14 November 2007 distributed systems. The issues related to the design and implementation of efficient

Received in revised form 9 June 2009

checkpointing and recovery techniques for distributed systems have been thoroughly
Accepted 14 June 2009

understood. For example, the necessary and sufficient conditions for a set of checkpoints
to be part of a consistent global checkpoint has been established for distributed computa-
tions. In this paper, we address the analogous question for distributed database systems. In
distributed database systems, transaction-consistent global checkpoints are useful not only

Keywords: . . . L.
Chjéckpointing for recovery from failure but also for audit purposes. If each data item of a distributed data-
Recovery base is checkpointed independently by a separate transaction, none of the checkpoints

Distributed databases taken may be part of any transaction-consistent global checkpoint. However, allowing indi-
vidual data items to be checkpointed independently results in non-intrusive checkpointing.
In this paper, we establish the necessary and sufficient conditions for the checkpoints of a
set of data items to be part of a transaction-consistent global checkpoint of the distributed
database. Such conditions can also help in the design and implementation of non-intrusive
checkpointing algorithms for distributed database systems.
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

It is a common practice to take checkpoint of a database from time to time, and restore the database to the most recent
checkpoint when a failure occurs. It is desirable that a global checkpoint of a database records a state of the database which
reflects the effect of a set of completed transactions and not the results of any partially executed transactions. Such a
checkpoint of the database is called a transaction-consistent global checkpoint [23]. A straightforward way to take a trans-
action-consistent global checkpoint of a distributed database is to block all newly submitted transactions and wait until all
the currently executing transactions finish and then take the checkpoint. Such a checkpoint is guaranteed to be transaction-
consistent, but this approach is not practical, since blocking newly-submitted transactions will increase transaction response
time which may not be acceptable for the users of the database. Another approach would be to run a read only transaction
which would read the entire database and save it to stable storage; the underlying concurrency control algorithm will ensure
that the saved state is transaction-consistent. This would be inefficient especially in the presence of long-living transactions.
A more efficient way would be to save (checkpoint) the state of each data item independently and periodically without
blocking any transaction. However if each data item is checkpointed independently and periodically, some checkpoints of
some data items may not be part of any transaction-consistent global checkpoint of the database and hence are useless.

* Corresponding author. Tel.: +1 859 257 9234; fax: +1 859 323 3740.
E-mail addresses: jwu6@cs.uky.edu (J. Wu), mani@cs.uky.edu, manivann@cs.uky.edu (D. Manivannan), bhavani.thuraisingham@utdallas.edu
(B. Thuraisingham).

0020-0255/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/.ins.2009.06.016

http://dx.doi.org/10.1016/j.ins.2009.06.016
mailto:jwu6@cs.uky.edu
mailto:mani@cs.uky.edu, &emailxl3;
mailto:manivann@cs.uky.edu
mailto:bhavani.thuraisingham@utdallas.edu
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

3660 J. Wu et al. /Information Sciences 179 (2009) 3659-3672

In this paper, we address this issue and establish the necessary and sufficient conditions for a checkpoint of a data item
(or the checkpoints of a set of data items) to be part of a transaction-consistent global checkpoint of the database. This result
would be useful for constructing a transaction-consistent global checkpoint incrementally from the checkpoints of each indi-
vidual data item. By applying this condition, we can start from an useful checkpoint of any data item and then incrementally
add checkpoints of other data items until we get a transaction-consistent checkpoint of the database.

1.1. Motivation and objectives

In a distributed system, to minimize the lost computation due to failures, the state of the processes involved in a distrib-
uted computation are periodically saved (checkpointed). When one or more processes involved in the distributed computa-
tion fails, the processes are restarted from a previously saved consistent global checkpoint. When processes are independently
checkpointed, the checkpoints taken may not be part of any consistent global checkpoint and hence are useless [21]. Netzer
and Xu [21] introduced the notion of zigzag paths between checkpoints of processes involved in a distributed computation
and established the necessary and sufficient conditions for a given checkpoint of a process to be part of a consistent global
checkpoint (i.e., useful). They proved that a checkpoint of a process is useful if and only if there is no zigzag path from that
checkpoint to itself. Several checkpointing algorithms have been proposed for distributed systems [2,18,9,8,19,3,17].

Checkpointing is also an established technique for handling failures in database systems. Many of the checkpointing
schemes proposed in the literature for distributed database systems are intrusive to different extent. Some of these are dis-
cussed in Section 2 and Section 3. Non-intrusive checkpointing algorithms under which transactions do not have to be
blocked when checkpoints are taken are desirable [30]. If each data item in a distributed database is checkpointed by an
independent transaction periodically, it is quite possible that none of the checkpoints taken is part of any transaction-con-
sistent global checkpoint of the database. Motivated by the work of Netzer and Xu for distributed computations [21], in this
paper, we establish the necessary and sufficient conditions for a given checkpoint of a data item (or checkpoints of a set of
data items) to be part of a transaction consistent global checkpoint.

1.2. Organization of the paper

The remainder of this paper is organized as follows. In Section 2 we introduce the background required for understanding
the paper. Section 3 discusses related works. In Section 4 we present the necessary and sufficient conditions for a set of
checkpoints of a set of data items to be part of a transaction consistent global checkpoint and prove its correctness; we also
discuss the applications of our work. Section 5 concludes the paper.

2. Background
2.1. System model

We consider a model of distributed database system similar to the model in [23]. In this model, a distributed database sys-
tem consists of a set of data items residing at various sites. Sites can exchange information via messages transmitted on a
communication network, which is assumed to be reliable. The data items of the database are accessed by transactions
and the transactions are controlled by transaction managers (TM) that reside at these sites. The TM is responsible for the
proper scheduling of transactions using appropriate concurrency control algorithms in such a way that the integrity of
the database is maintained. In addition, the data items at each site are controlled by a data manager (DM). Each DM is
responsible for controlling access to data items at its site. Each data item is checkpointed by a local transaction periodically.
Before a transaction takes a checkpoint of a data item it obtains an exclusive lock on the data item so no other transaction can
be accessing that data item while it is checkpointed. The state of a data item changes when a transaction accesses that data
item for a write operation. In order to guarantee the integrity and efficiency of transaction processing, the following four
properties, referred to as ACID [27], must be maintained.

e Atomicity: Each transaction is executed in its entirety, or not at all executed.

e Consistency preservation: Execution of a transaction in isolation (that is, with no other transaction execute concurrently)
preserves the consistency of the database.

¢ Isolation: Even though multiple transactions may execute concurrently, the system guarantees that for every pair of trans-
actions T; and Tj, it appears to T; that either T; finished execution before T; started, or T; started execution after T; finished.
Thus, each transaction is unaware of other transactions executing concurrently in the system.

e Durability: After a transaction completes successfully, the changes it has made to the database persist, even if there are
system failures.

In order to maintain ACID requirements and achieve maximum performance, a proper schedule of transactions need to be
arranged in which the operations of various transactions are interleaved as much as possible. Given a schedule, a directed
graph, referred to as precedence graph [28] or serialization graph [27], can be constructed to illustrate the procedure of

Download English Version:

https://daneshyari.com/en/article/395908

Download Persian Version:

https://daneshyari.com/article/395908

Daneshyari.com

https://daneshyari.com/en/article/395908
https://daneshyari.com/article/395908
https://daneshyari.com

