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a b s t r a c t

In order to discover interesting patterns and dependencies in data, an approach based on
rough set theory can be used. In particular, dominance-based rough set approach (DRSA)
has been introduced to deal with the problem of ordinal classification with monotonicity
constraints (also referred to as multicriteria classification in decision analysis). However,
in real-life problems, in the presence of noise, the notions of rough approximations were
found to be excessively restrictive. In this paper, we introduce a probabilistic model for
ordinal classification problems with monotonicity constraints. Then, we generalize the
notion of lower approximations to the stochastic case. We estimate the probabilities with
the maximum likelihood method which leads to the isotonic regression problem for a two-
class (binary) case. The approach is easily generalized to a multi-class case. Finally, we
show the equivalence of the variable consistency rough sets to the specific empirical
risk-minimizing decision rule in the statistical decision theory.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

We consider an ordinal classification problem that consists in assignment of objects to K ordered classes Clk,
k 2 Y ¼ f1; . . . ;Kg, such that if k > k0 then class Clk is higher than class Clk0 . Objects are evaluated on a set of m attributes with
ordered value sets. Here, without loss of generality, we assume that the value set of each attribute is a subset of R (even if the
scale is purely ordinal, evaluation on attributes can be numbercoded) and the order relation is a linear order P, so that each
object xi is an m-dimensional vector ðxi1; . . . ; ximÞ. It is assumed that monotonicity constraints are present in the data: a higher
evaluation of an object on an attribute, with other evaluations being fixed, should not decrease its assignment to the class.
One can induce a data model from a training set U ¼ fðx1; y1Þ; . . . ; ðxn; ynÞg, consisting of n objects (denoted with x) already
assigned to their classes (class indices denoted with y 2 Y). We also denote X ¼ fx1; . . . ; xng, and by class Clk we mean the
subset of X consisting of objects xi having class indices yi ¼ k, Clk ¼ fxi 2 X : yi ¼ kg.

Thus, ordinal classification problem with monotonicity constraints resembles a typical classification problem considered
in machine learning [10,17], but requires two additional constraints. The first one is the assumption of the ordinal scale on
each attribute and on class indices. The second constraint is the monotonicity property: the expected class index increases
with increasing evaluations on attributes. Such properties are commonly encountered in real-life applications, yet rarely
taken into account. In decision theory, a multicriteria classification problem is considered [13], which has exactly the form
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E-mail addresses: wkotlowski@cs.put.poznan.pl (W. Kotłowski), kdembczynski@cs.put.poznan.pl (K. Dembczyński), salgreco@unict.it (S. Greco),
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of ordinal classification problem with monotonicity constraints. Moreover, in many different domains monotone properties
follow from the domain knowledge about the problem and should not be neglected. They have been recognized in applica-
tions such as bankruptcy risk prediction [11], breast cancer diagnosis [25], house pricing [23], credit rating [9], liver disorder
diagnosis [26] and many others.

As an example, consider the customer satisfaction analysis [15], which aims at determining customer preferences in order
to optimize decisions about strategies for launching new products, or about improving the image of existing products. The
monotonicity constraints are of fundamental importance here. Indeed, consider two customers, A and B, and suppose that
the evaluations of a product by customer A on a set of attributes are better than the evaluations by customer B. In this case,
it is reasonable to expect that also the comprehensive evaluation of this product (i.e. class, to which the product is assigned)
by customer A is better (or at least not worse) than the comprehensive evaluation made by customer B. As another example,
consider the problem of credit rating. One of the attributes could be the degree of regularity in paying previous debts by a
consumer (with ordered value set, e.g. ‘‘unstable”, ‘‘acceptable”, ‘‘very stable”); on the other hand, the class attribute could be
the evaluation of potential risk of lending money to a consumer, also with ordered value set (e.g. ‘‘high-risk”, ‘‘medium-risk”,
‘‘low-risk”); moreover, there exists a natural monotone relationship between the two attributes: the more stable the pay-
ment of the debt, the less risky the new credit is.

Despite the monotone nature of the data, it still may happen that in the training set U, there exists an object xi not worse
than another object xj on all attributes, however, xi is assigned to a class worse than xj; such situation violates the monotone
properties of the data, so we shall call objects xi and xj inconsistent. Rough set theory [19,20,22] has been adapted to deal with
this kind of inconsistency and the resulting methodology has been called dominance-based rough set approach (DRSA) [12,13].
In DRSA, the classical indiscernibility relation has been replaced by a dominance relation. Using the rough set approach to
the analysis of multicriteria classification problem, we obtain lower and upper (rough) approximations of unions of classes.
The difference between upper and lower approximations shows inconsistent objects with respect to the dominance princi-
ple. It can happen that due to the presence of noise, the data is so inconsistent, that too much information is lost, thus making
the DRSA inference model not accurate. To cope with the problem of excessive inconsistency, a variable consistency model
within DRSA has been proposed (VC-DRSA) [14].

In this paper, we look at DRSA from a different point of view, identifying its connections with statistics and statistical
decision theory. We start with the overview of the classical rough set theory and show that the variable-precision model
[31,32] comes from the maximum likelihood estimation method. Then we briefly present main concepts of DRSA. After-
wards, the main part of the paper follows: we introduce the probabilistic model for a general class of ordinal classifi-
cation problems with monotonicity constraints, and we generalize lower approximations to the stochastic case. Using
the maximum likelihood method we show how the probabilities can be estimated in a nonparametric way. It leads
to the statistical problem of isotonic regression, which is then solved by the optimal objects reassignment problem. Fi-
nally, we explain the approach as being a solution to the problem of finding a decision function minimizing the empir-
ical risk [2].

We stress that the theory presented in this paper is related to the training set only. In order to properly classify objects
outside the training set, a generalizing classification function must be constructed. We do not consider this problem here.
The aim of this paper is the analysis of inconsistencies in the dataset, handling and correcting them according to the prob-
abilistic model assumption, which comes from exploring the monotonicity constraints. This analysis can be seen as a sto-
chastic extension of DRSA. Therefore, the methodology presented here can be treated as a form of preprocessing and
improving the data.

2. Maximum likelihood estimation in the classical variable precision rough set approach

We start with the classical rough set approach [19], which neither takes into account monotonicity constraints nor are the
classes and attribute values ordered. It is based on the assumption that objects having the same description are indiscernible
(similar) with respect to the available information. The indiscernibility relation induces a partition of the universe into blocks
of indiscernible objects, called granules [19,13]. The indiscernibility relation I is defined as

I ¼ fðxi; xjÞ 2 X � X : xit ¼ xjt 8t ¼ 1; . . . ;mg; ð1Þ

where xit is the evaluation of object xi on attribute t, as defined in previous section. The equivalence classes of I are called
granules. The equivalence class for an object x 2 X is denoted IðxÞ. Any subset S of the universe may be expressed in terms
of the granules either precisely (as a union of granules) or approximately only. In the latter case, the subset S may be char-
acterized by two ordinary sets, called lower and upper approximations. Here, we always assume, that the approximated set S
is a class Clk; k 2 Y . The lower and upper approximations of class Clk are defined, respectively, by

Clk ¼ fxi 2 X : IðxiÞ � Clkg; ð2Þ
Clk ¼ fxi 2 X : IðxiÞ \ Clk 6¼ ;g: ð3Þ

It follows from the definition, that Clk is the largest union of the granules included in Clk, while Clk is the smallest union of the
granules containing Clk [19]. It holds, that Clk � Clk � Clk. Therefore, if an object x 2 X belongs to Clk, it is also certainly an
element of Clk, while if x belongs to Clk, it may belong to class Clk.
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