

Available online at www.sciencedirect.com

Information Sciences 177 (2007) 3297-3304

INFORMATION SCIENCES AN INTERNATIONAL JOURNAL

www.elsevier.com/locate/ins

λ -Statistical limit points of the sequences of fuzzy numbers

A. Nihal Tuncer *, F. Berna Benli

Department of Mathematics, Erciyes University, Talas, 38039 Kayseri, Turkey

Received 21 March 2006; received in revised form 8 February 2007; accepted 13 February 2007

Abstract

Aytar has introduced the concepts of statistical limit and cluster points of a sequence of fuzzy numbers based on the definitions given in Fridy's study for sequences of real numbers. In this paper, we define λ -statistical limit and λ -statistical cluster points of sequences of fuzzy numbers and discuss the relations among the sets of ordinary limit points, λ -statistical limit points and λ -statistical cluster points of sequences of fuzzy numbers. (© 2007 Elsevier Inc. All rights reserved.

AMS classification: 40A05; 26A03; 11B05

Keywords: Statistically convergent sequences of fuzzy numbers; Statistical cluster point; Statistical limit point; Limit points of fuzzy numbers; Natural density; λ -Statistical cluster point; λ -Statistical limit point

1. Introduction

The idea of statistical convergence of a sequence was introduced by Fast [6]. Statistical convergence was generalized by Buck [4].

Fridy [7] was the first not only to introduce the set Γ_X of all statistical cluster points and the set Λ_X of all limit points but also to discuss their definitions and properties, as well as the specific relations between them and the relations to the set L_X of all ordinary limit points. These issues have been further explored in finite dimensional spaces by Pehlivan and Mamedov [8,11]. Bounded and convergent sequences of fuzzy numbers were first introduced by Matloka [9]. He also showed that every convergent sequence is bounded.

Later, Nuray and Savas [10] have introduced and discussed the concepts of statistically convergent and statistically Cauchy sequences of fuzzy numbers. Also Savas [12] has studied the λ -statistical convergence of the sequences of fuzzy numbers. λ -Statistically Cauchy sequences of fuzzy numbers have been introduced by Tuncer and Benli [13].

Recently, Aytar [1] has defined statistical limit and cluster points of a sequence of fuzzy numbers. Aytar and Pehlivan [2] have introduced the statistical monotonicity and boundedness of a sequence of fuzzy numbers.

^{*} Corresponding author. Tel.: +90 352 437 52 62.

E-mail addresses: ntuncer@erciyes.edu.tr (A. Nihal Tuncer), akpinarb@erciyes.edu.tr (F. Berna Benli).

^{0020-0255/\$ -} see front matter @ 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.ins.2007.02.007

Aytar et al. [3] have also extended the concepts of statistical limit superior and limit inferior to statistically bounded sequences of fuzzy numbers. Moreover, they have given some fuzzy-analogues of properties of statistical limit superior and limit inferior for sequences of real numbers.

Et, Altinok and Colak [5] have introduced the concept of strongly $\Delta_{\lambda_p}^2$ -Cesaro summability of a sequence of fuzzy numbers.

In this paper, as in the case of real numbers, the concepts of λ -thin and λ -nonthin subsequences of a sequence of fuzzy numbers have been given. With the help of λ -thin and λ -nonthin subsequences, we have defined λ -statistical limit and λ -statistical cluster points of a sequence of fuzzy numbers. Later, we have established the inclusion relations between the sets of ordinary limit points, λ -statistical limit points and λ -statistical cluster points of a sequence of a sequence of fuzzy numbers.

2. Preliminaries

Let D denote the set of all closed bounded intervals $A = [\underline{A}, \overline{A}]$ on the real line R. For $A, B \in D$ define

$$A \leq B \iff \underline{A} \leq \underline{B} \quad \text{and} \quad A \leq \overline{B}$$
$$d(A,B) = \max(|\underline{A} - \underline{B}|, |\overline{A} - \overline{B}|)$$

It is easy to see that d defines a Hausdorff metric on D and (D,d) is a complete metric space. Also \leq is a partial order on D.

A fuzzy number is a fuzzy subset of the real line R which is bounded, convex and normal. Let L(R) denote the set of all fuzzy numbers which are upper semicontinuous and have compact support. In other words, if $X \in L(R)$, then for any $\alpha \in [0, 1]$, X^{α} is compact, where

$$X^{\alpha} = \begin{cases} t : X(t) \ge \alpha & \text{if } \alpha \in (0,1] \\ t : X(t) > 0 & \text{if } \alpha = 0 \end{cases}$$

 $X^{\alpha} = [\underline{X}^{\alpha}, \overline{X}^{\alpha}].$

Define a map

$$\overline{d}: L(R) \times L(R) \to R$$

by

$$\overline{d}(X,Y) = \sup_{0 \le \alpha \le 1} d(X^{\alpha}, Y^{\alpha})$$

For $X, Y \in L(\mathbb{R})$ define $X \leq Y$ if and only if $\underline{X}^{\alpha} \leq \underline{Y}^{\alpha}$ and $\overline{X}^{\alpha} \leq \overline{Y}^{\alpha}$ for each $\alpha \in [0, 1]$.

It is known that L(R) is a complete metric space with the metric \overline{d} (see [11]).

Now we define the statistical convergence and λ -statistical convergence of sequences of fuzzy numbers and give an example which compares them.

Definition 2.1 [10]. A sequence $X = (X_k)$ of fuzzy numbers is said to be statistically convergent to the fuzzy number X_0 , written as st $-\lim_k X_k = X_0$, if for every $\varepsilon > 0$,

$$\lim_{n} \frac{1}{n} |\{k \in N : \overline{d}(X_k, X_0) \ge \varepsilon\}| = 0$$

Definition 2.2 ([12]). Let $I_n = [n - \lambda_n + 1, n]$, $\lambda = (\lambda_n)$ be a non-decreasing sequence of positive numbers tending to ∞ , $\lambda_{n+1} \leq \lambda_n + 1$ with $\lambda_1 = 1$ and $X = (X_k)$ be a sequence of fuzzy numbers. A sequence $X = (X_k)$ of fuzzy numbers is said to be λ -statistically convergent or $s\lambda$ -convergent to fuzzy numbers X_0 , written as $s\lambda - \lim X_k = X_0$ if for every $\varepsilon > 0$

$$\lim_{n} \frac{1}{\lambda_{n}} |\{k \in I_{n} : \overline{d}(X_{k}, X_{0}) \ge \varepsilon\}| = 0$$

Download English Version:

https://daneshyari.com/en/article/395995

Download Persian Version:

https://daneshyari.com/article/395995

Daneshyari.com