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Abstract

In this paper, we derive conditions under which a dissipative impulsive dynamical system is asymptotically stabilizable
by a feedback controller. Specializing the obtained results to the case of dissipative linear impulsive dynamical systems with
the quadratic supply rate, we establish the corresponding sufficient conditions. Finally, simulation results are given to dem-
onstrate the effectiveness of our results.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The feedback stabilization of nonlinear systems is an active research area in nonlinear control systems from
1960s. Feedback stabilization is also an important step in achieving additional control objectives, e.g., asymp-
totic tracking, disturbance attenuation, artificial intelligence, etc. Many results on feedback stabilization are
now available in the literature.

In many engineering problems, stability issues are often linked to the theory of feedback stabilization, and
dissipative systems (a dissipative system is the one which postulates that the energy dissipated inside a dynam-
ical system is less than the energy supplied from external source). In the literature of nonlinear control, dis-
sipativity concept was initially introduced by Willems in his seminal two-part papers [29,30] in terms of an
inequality involving a storage function and a supply rate. The extension of the work of Willems to the case
of affine nonlinear systems was carried out by Hill and Moylan [14,15] and references cited therein. Byrnes
and Isidori started to study the dissipativity and stabilization of nonlinear continuous systems based on
geometric nonlinear system theory in [4,5]. Recently, researchers have extended the notions of classical
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dissipativity theory using generalized storage functions and supply rates for hybrid dynamical systems. For
example, Haddad et al. have developed dissipativity concepts for nonlinear impulsive dynamical systems
and left-continuous dynamical systems in [9–11] and nonnegative time-delay systems [8,12]. Hill and Zhao
have established dissipativity theory for switched systems in [32] and references cited therein. Liu et al. have
studied the robust dissipativity problem for impulsive dynamical systems [24], etc.

Feedback stabilization and dissipativity theory as well as the connected Lyapunov stability theory have
been studied for dynamical systems possessing continuous motions. However, there are many real world sys-
tems and natural processes which display some kind of dynamic behavior in a style of both continuous and
discrete characteristics. For instance, many evolutionary processes, particularly some biological systems such
as biological neural networks and bursting rhythm models in pathology, as well as optimal control models in
economics, frequency-modulated signal processing systems, and flying object motions, and the like, are char-
acterized by abrupt changes of in the state at certain time instances. This is the familiar impulsive phenomenon
and the corresponding systems are called impulsive dynamical systems [2,16,17,20–25]. Recently, researchers
have also studied the stability and feedback control problems for other discontinuous hybrid dynamical sys-
tems, see [1,6,13,26–28,31] and references cited therein. But the results obtained do not include the feedback
stabilization of dissipative impulsive dynamical systems.

The traditional methods used in the study of feedback stabilization of dissipative nonlinear continuous sys-
tems are those based on the LaSalle invariance principle [18,19]. Although a generalization of the LaSalle
invariance principle for impulsive dynamical systems (even left-continuous) has been established in the liter-
ature [7], it is difficult to be used to analyze the feedback stabilization of dissipative nonlinear impulsive
dynamical systems because solutions of impulsive dynamical systems are no longer continuous.

In this paper, the stability results for general impulsive dynamical systems obtained in [25], instead of the
LaSalle invariance principle, are used to derive the conditions under which a dissipative impulsive dynamical
system is asymptotically stabilizable by an output or state feedback controller. We then draw further conclu-
sions by specializing the obtained results to the case of dissipative linear impulsive dynamical systems with a
quadratic supply rate. Finally, we present numerical simulation studies to illustrate our results.

2. Preliminaries

In the sequel, let R+ = [0, +1), N = {0, 1, 2,. . .}, and let U c � Rmc and U d � Rmd be compact subsets. A
matrix P > 0 (respectively, P 0) means that P is a positive (respectively, positive-semi) definite matrix. Let
Cr
, Cr(Rn), where r 2 N and n 2 N are given, be the space of functions such that their partial derivatives

up to and including the rth order are continuous on Rn. In particular, C0 denotes the space of all continuous
functions on Rn. Let K be the class of functions /: R+! R+, which is continuous, strictly increasing and /
(0) = 0, K0 the class of continuous functions w: R+! R+ such that w(s) = 0 if and only if s = 0, and PC

the class of functions p: R+! R+, where p is continuous everywhere except at tk, k 2 N, for which p is left
continuous and the right limit pðtþk Þ exists. Let Sq = {x 2 Rn:||x|| 6 q}.

Consider an impulsive dynamical system of the form:

_xðtÞ ¼ fcðxðtÞÞ þ gcðxðtÞÞucðtÞ; t 6¼ tk;

DxðtÞ ¼ fdðxðt�ÞÞ þ gdðxðt�ÞÞudðtÞ; t ¼ tk;

ycðtÞ ¼ hcðxðtÞÞ þ J cðxðtÞÞucðtÞ; t 6¼ tk;

ydðtÞ ¼ hdðxðt�ÞÞ þ J dðxðt�ÞÞudðtÞ; t ¼ tk;

8>>><
>>>:

ð1Þ

where x(t0) = x0; xðtÞ 2 Rn; ucðtÞ 2 U c; ycðtÞ 2 Rlc , for t 2 R+; DxðtkÞ ¼ xðtþk Þ � xðt�k Þ; udðtkÞ 2 Ud ; ydðtkÞ 2 Rld ,
for k 2 N; fc : Rn ! Rn; gc : Rn ! Rn�mc are Lipschitz continuous and satisfy fc(0) = 0; fd : Rn ! Rn;
gd : Rn ! Rn�md are continuous and satisfy fdð0Þ ¼ 0; hc : Rn ! Rlc satisfying hcð0Þ ¼ 0; J c : Rn ! Rlc�mc ;
hd : Rn ! Rld satisfying hd(0) = 0; and J d : Rn ! Rld�md :

We assume that the impulsive time instances satisfy 0 < t0 < t1 < t2 < � � � < tk <� � �, with tk!1 as k!1
and that x(t) is left-continuous at tk, k 2 N, i.e. xðt�k Þ ¼ xðtkÞ.

Let U be the class of all admissible inputs consisting of all continuous functions uc(t) 2 Uc (t P 0), and all
vectors ud(tk) 2 Ud (k 2 N). We assume that U = (Uc,Ud) with (0, 0) 2 U.
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