
Practical compressed string dictionaries$

Miguel A. Martínez-Prieto a,n,1, Nieves Brisaboa b, Rodrigo Cánovas c,
Francisco Claude d,3, Gonzalo Navarro e,2

a DataWeb Research, Department of Computer Science, University of Valladolid, Spain
b Database Laboratory, University of A Coruña, Spain
c NICTA Victoria Research Laboratory, Department of Computing and Information Systems (CIS), The Univerity of Melbourne, Australia
d Escuela de Informática y Telecomunicaciones, Universidad Diego Portales, Chile
e CeBiB — Center of Biotechnology and Bioengineering, Department of Computer Science, University of Chile, Chile

a r t i c l e i n f o

Article history:
Received 9 May 2014
Received in revised form
28 July 2015
Accepted 18 August 2015
Recommended by Ralf Schenkel
Available online 21 September 2015

Keywords:
Compressed string dictionaries
Text processing
Text databases
Compressed data structures

a b s t r a c t

The need to store and query a set of strings – a string dictionary – arises in many kinds of
applications. While classically these string dictionaries have accounted for a small share of
the total space budget (e.g., in Natural Language Processing or when indexing text col-
lections), recent applications in Web engines, Semantic Web (RDF) graphs, Bioinformatics,
and many others handle very large string dictionaries, whose size is a significant fraction
of the whole data. In these cases, string dictionary management is a scalability issue by
itself. This paper focuses on the problem of managing large static string dictionaries in
compressed main memory space. We revisit classical solutions for string dictionaries like
hashing, tries, and front-coding, and improve them by using compression techniques. We
also introduce some novel string dictionary representations built on top of recent
advances in succinct data structures and full-text indexes. All these structures are
empirically compared on a heterogeneous testbed formed by real-world string diction-
aries. We show that the compressed representations may use as little as 5% of the original
dictionary size, while supporting lookup operations within a few microseconds. These
numbers outperform the state-of-the-art space/time tradeoffs in many cases. Further-
more, we enhance some representations to provide prefix- and substring-based searches,
which also perform competitively. The results show that compressed string dictionaries
are a useful building block for various data-intensive applications in different domains.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A string dictionary is a data structure that maintains a
set of strings. It arises in classical scenarios like Natural
Language (NL) processing, where finding the lexicon of a
text corpus is the first step in analyzing it [56]. They also

arise as a component of inverted indexes, when indexing NL
text collections [79,19,6]. In both cases, the dictionary
comprises all the different words used in the text collec-
tion. The dictionary implements a bijective function that
maps strings to identifiers (IDs, generally integer values)
and back. Thus, a string dictionary must provide, at least,

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

http://dx.doi.org/10.1016/j.is.2015.08.008
0306-4379/& 2015 Elsevier Ltd. All rights reserved.

☆ A preliminary version of this paper appeared in Proceedings of 10th International Symposium on Experimental Algorithms (SEA), 2011, pp. 136–147.
n Corresponding author.
E-mail addresses: migumar2@infor.uva.es (M.A. Martínez-Prieto), brisaboa@udc.es (N. Brisaboa), rcanovas@student.unimelb.edu.au (R. Cánovas),

fclaude@recoded.cl (F. Claude), gnavarro@dcc.uchile.cl (G. Navarro).
1 Funded by the Funded by the Spanish Ministry of Economy and Competitiveness: TIN2013-46238-C4-3-R, and ICT COST Action KEYSTONE (IC1302).
2 Funded with basal funds FB0001, Conicyt, Chile.
3 Funded in part by Fondecyt Iniciación 11130104.

Information Systems 56 (2016) 73–108

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2015.08.008
http://dx.doi.org/10.1016/j.is.2015.08.008
http://dx.doi.org/10.1016/j.is.2015.08.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.08.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.08.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.08.008&domain=pdf
mailto:migumar2@infor.uva.es
mailto:brisaboa@udc.es
mailto:rcanovas@student.unimelb.edu.au
mailto:fclaude@recoded.cl
mailto:gnavarro@dcc.uchile.cl
http://dx.doi.org/10.1016/j.is.2015.08.008


two complementary operations: (i) string-to-ID locates
the ID for a given string, and (ii) ID-to-string extracts
the string identified by a given ID.

String dictionaries are a simple and effective tool for
managing string data in a wide range of applications.
Using dictionaries enables replacing (long, variable-
length) strings by simple numbers (their IDs), which are
more compact to represent and easier and more efficient
to handle. A compact dictionary providing efficient map-
ping between strings and IDs saves storage space, pro-
cessing and transmission costs, in data-intensive applica-
tions. The growing volume of the datasets, however, has
led to increasingly large dictionaries, whose management
is becoming a scalability issue by itself. Their size is of
particular importance to attain the optimal performance
under restrictions of main memory.

This paper focuses on techniques to compress string
dictionaries and the space/time tradeoffs they offer. We
focus on static dictionaries, which do not change along the
execution. These are appropriate in the many applications
using dictionaries that either are static or are rebuilt only
sparingly. We revisit traditional techniques for managing
string dictionaries, and enhance them with data com-
pression tools. We also design new structures that take
advantage of more sophisticated compression methods,
succinct data structures, and full-text indexes [62]. The
resulting techniques enable large string dictionaries to be
managed within compressed space in main memory. Dif-
ferent techniques excel on different application niches. The
least space-consuming variants operate within micro-
seconds while compressing the dictionary to as little as 5%
of its original size.

The main contributions of this paper can be summar-
ized as follows:

1. We present, as far as we know, the most exhaustive
study to date of the space/time efficiency of compressed
string dictionary representations. This is not only a
survey of traditional techniques, but we also design
novel variants based on combinations of existing tech-
niques with more sophisticated compression methods
and data structures.

2. We perform an exhaustive experimental tuning and
comparison of all the variants we study, on a variety of
real-world scenarios, providing a global picture of the
current state of the art for string dictionaries. This
results in clear recommendations on which structures
to use depending on the application.

3. Most of the techniques outstanding in the space/time
tradeoff turn out to be combinations we designed and
engineered, between classical methods and more
sophisticated compression techniques and data struc-
tures. These include combinations of binary search,
hashing, and Front-Coding with grammar-based and
optimized Hu-Tucker compression. In particular, unco-
vering the advantages of the use of grammar compres-
sion for string dictionaries is an important finding.

4. We create a Cþþ library, libCSD (Compressed String
Dictionaries), implementing all the studied techniques.
It is publicly available at https://github.com/migumar2/
libCSD under GNU LGPL license.

5. We go beyond the basic string-to-ID and ID-to-

string functionality and implement advanced searches
for some of our techniques. These enable prefix-based
searching for most methods (except Hash ones) and sub-
string searches for the FM-Index and XBW dictionaries.

The paper is organized as follows. Section 2 provides a
general view of string dictionaries. We start describing var-
ious real-world applications where large dictionaries must
be efficiently handled, then define the notation used in the
paper, and finally describe classical and modern techniques
used to support string dictionaries, particularly in com-
pressed space. Section 3 provides the minimal background in
data compression necessary to understand the various
families of compressed string dictionaries studied in this
paper. Section 4 describes how we have applied those
compression methods so that they perform efficiently for the
dictionary operations. Sections 5–9 focus on each of the
families of compressed string dictionaries. Section 10 pro-
vides a full experimental study of the performance of the
described techniques on dictionaries coming from various
real-world applications. The best performing variants are
then compared with the state of the art. We find several
niches in which the new techniques dominate the space/
time tradeoffs of classical methods. Finally, Section 11 con-
cludes and describes some future work directions.

2. String dictionaries

2.1. Applications

This section takes a short tour over various example
applications where handling very large string dictionaries
is a serious issue and compression could lead to con-
siderable improvements.

NL APPLICATIONS: It is the most classic application area of
string dictionaries. Traditionally, the size of these diction-
aries has not been a concern because classical NL collec-
tions were carefully polished to avoid typos and other
errors. On those collections, Heaps [44] formulated an
empirical law establishing that, in a text of length n, the
dictionary grows sublinearly as OðnβÞ, for some 0oβo1
depending on the type of text. β Value is usually in the
range 0.4–0.6 [6], so the dictionary of a terabyte-size col-
lection would occupy just a few megabytes and easily fit in
any main memory. Heaps' law, however, does not model
well the dictionaries used in other NL applications. The use
of string dictionaries in Web search engines or in Machine
Translation (MT) systems are two well-known examples:

� Web collections are much less “clean” than text collec-
tions whose content quality is carefully controlled.
Dictionaries of Web crawls easily exceed the gigabytes,
due to typos and unique identifiers that are taken as
“words”, but also due to “regular words” from multiple
languages. The ClueWeb09 dataset4 is a real example
that comprises close to 200 million different words

4 http://boston.lti.cs.cmu.edu/Data/clueweb09

M.A. Martínez-Prieto et al. / Information Systems 56 (2016) 73–10874

http://github.com/migumar2/libCSD
http://github.com/migumar2/libCSD
http://boston.lti.cs.cmu.edu/Data/clueweb09


Download English Version:

https://daneshyari.com/en/article/396472

Download Persian Version:

https://daneshyari.com/article/396472

Daneshyari.com

https://daneshyari.com/en/article/396472
https://daneshyari.com/article/396472
https://daneshyari.com

