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a b s t r a c t

Hierarchical data are often modelled as trees. An interesting query identifies pairs of
similar trees. The standard approach to tree similarity is the tree edit distance, which has
successfully been applied in a wide range of applications. In terms of runtime, the state-
of-the-art algorithm for the tree edit distance is RTED, which is guaranteed to be fast
independent of the tree shape. Unfortunately, this algorithm requires up to twice the
memory of its competitors. The memory is quadratic in the tree size and is a bottleneck for
the tree edit distance computation.

In this paper we present a new, memory efficient algorithm for the tree edit distance,
AP-TED (All Path Tree Edit Distance). Our algorithm runs at least as fast as RTED without
trading in memory efficiency. This is achieved by releasing memory early during the first
step of the algorithm, which computes a decomposition strategy for the actual distance
computation. We show the correctness of our approach and prove an upper bound for the
memory usage. The strategy computed by AP-TED is optimal in the class of all-path
strategies, which subsumes the class of LRH strategies used in RTED. We further present
the AP-TEDþ algorithm, which requires less computational effort for very small subtrees
and improves the runtime of the distance computation. Our experimental evaluation
confirms the low memory requirements and the runtime efficiency of our approach.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Data with hierarchical dependencies are often modelled as trees. Tree data appear in many applications, ranging from
hierarchical data formats like JSON or XML to merger trees in astrophysics [33]. An interesting query computes the similarity
between two trees. The standard measure for tree similarity is the tree edit distance, which is defined as the minimum-cost
sequence of node edit operations that transform one tree into another. The tree edit distance has been successfully applied
in bioinformatics (e.g., to find similarities between RNA secondary structures [1,29], neuronal cells [21], or glycan structures
[3]), in image analysis [7], pattern recognition [25], melody recognition [19], natural language processing [28], information
extraction [12,23], and document retrieval [22], and has received considerable attention from the database community
[5,8–11,16–18,26,27].
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The fastest algorithms for the tree edit distance (TED) decompose the input trees into smaller subtrees and use dynamic
programming to build the overall solution from the subtree solutions. The key difference between various TED algorithms is
the decomposition strategy, which has a major impact on the runtime. Early attempts to compute TED [13,24,37] use a
hard-coded strategy, which disregards or only partially considers the shape of the input trees. This may lead to very poor
strategies and asymptotic runtime differences of up to a polynomial degree. The most recent development is the Robust Tree
Edit Distance (RTED) algorithm [30], which operates in two steps (cf. Fig. 1(a)). In the first step, a decomposition strategy is
computed. The strategy adapts to the input trees and is shown to be optimal among all previously proposed strategies. The
actual distance computation is done in the second step, which executes the strategy.

In terms of runtime, the overhead for the strategy computation in RTED is small compared to the gain due to the better
strategy. Unfortunately, this does not hold for the main memory consumption. Fig. 1(b) shows the memory usage for two
example trees (perfect binary trees) of 8191 nodes: the strategy computation requires 1.1 GB of RAM, while the execution of
the strategy (i.e., the actual distance computation) requires only 0.55 GB. Thus, for large instances, the strategy computation
is the bottleneck and the fallback is a hard-coded strategy. This is undesirable since the gain of a good strategy grows
with the instance size. Reducing the memory requirements of the strategy computation affects the maximum tree size that
can be processed. This is crucial especially for large trees like abstract syntax trees of source code repositories [15,20]
(Emacs: 410k nodes and MythTV: 450k nodes) or merger trees in astrophysics1 [33].

In this paper we propose the AP-TED algorithm, which solves the memory problem of the strategy computation. This is
achieved by computing the strategy bottom-up using dynamic programming and releasing part of the memorization tables
early. We prove that our algorithm requires at most 1/3 of the memory that is needed by RTED's strategy computation [30].
As a result, the memory cost of the strategy computation is never above the cost of the distance computation. Our extensive
experimental evaluation on various tree shapes, which require very different strategies, confirms our analytic memory
bound and shows that our algorithm is often much better than its theoretical upper bound. For some tree shapes, it even
runs in linear space, while the RTED strategy algorithm always requires quadratic space.

In addition to reducing the memory usage, AP-TED computes the optimum in a larger class of strategies than RTED.
Strategies are expressed by root-leaf paths that guide the decomposition of the input trees. A path decomposes a tree into
subtrees by deleting nodes and edges on a root-leaf path. Each resulting subtree is recursively decomposed by a new root-
leaf path. RTED computes the optimal LRH strategy. An LRH strategy considers only left, right, and heavy paths. The left
(right) root-leaf path connects each parent with its first (last) child; the heavy path connects the parent with the rightmost
child that roots the largest subtree. AP-TED considers all root-leaf paths and is not limited to left, right, and heavy paths.
Thus, our strategy is at least as good as the strategies used by RTED. To the best of our knowledge, this is the first algorithm
to compute the optimal all-path strategy. The runtime complexity of our strategy algorithm is Oðn2Þ as for the RTED strategy.
This result is surprising since in each recursive step we need to consider a linear number of paths compared to only three
paths (left, right, and heavy) in the RTED strategy. Our empirical evaluation suggests that in practice our strategy algorithm
is even slightly faster than the RTED strategy algorithm since it allocates less memory.

On the distance computation side, we observe that a large number of subproblems that result from the tree decom-
positions are very small trees with one or two nodes only. We show that a significant boost can be achieved by treating
these cases separately. We introduce the AP-TEDþ algorithm, which leverages that fact and achieves runtime improvements
of more than 50% in some cases.

Summarizing, the contributions of this paper are the following:

� Memory efficiency. We substantially reduce the memory requirements w.r.t. previous strategy computation algorithms by
traversing the trees bottom-up and systematically releasing memory early. The resulting AP-TED algorithm always
consumes less memory for the strategy computation than for the actual distance computation and thus breaks the

Fig. 1. Strategy computation requires more memory than actual distance computation. (a) Two-step algorithm for tree edit distance and (b) strategy vs.
distance computation.

1 Accessible at http://www.mpa-garching.mpg.de/millennium/.
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