
S2CX: From relational data via SQL/XML
to (Un-)Compressed XML

Stefan Böttcher, Rita Hartel n, Dennis Wolters
University of Paderborn, Department of Computer Science, Fürstenallee 11, D-33102 Paderborn, Germany

a r t i c l e i n f o

Article history:
Received 26 August 2015
Accepted 3 September 2015
Available online 27 October 2015

Keywords:
SQL/XML
XML compression
XML generation from relational databases.

a b s t r a c t

The gap between storing data in relational databases and transferring data in form of XML
has been closed e.g. by SQL/XML queries that generate XML data out of relational data
sources. However, only few relational database systems support the evaluation of SQL/
XML queries. And even in those systems supporting SQL/XML, the evaluation of such
queries is quite slow compared to the evaluation of SQL queries. In this paper, we present
S2CX, an approach that allows to efficiently evaluate SQL/XML queries on any relational
database system, no matter whether it supports SQL/XML or not. As a result to an SQL/
XML query, S2CX supports different output formats ranging from plain XML to different
compressed XML representations including a succinct encoding of XML data, schema-
aware compressed XML to grammar compressed XML. In many cases, S2CX produces
compressed XML as a result to an SQL/XML query even faster than the evaluation of SQL/
XML queries into non-compressed XML as provided by Oracle 11 g and by DB2. Further-
more, our approach to query evaluation scales better, i.e., the larger the dataset, the faster
is our approach compared to SQL/XML query evaluation in Oracle 11 g and in DB2.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

XML has emerged to a standard for data transmission in
internet-based systems, even when the data source is data
stored within a relational database. This leads to an
increased data volume for data transmission and requires a
possibility to create XML data based on relational data as e.
g. described in the SQL/XML standard, which is supported
by only a few database systems.

We have developed S2CX, an approach that supports
SQL/XML queries on every SQL database system. Further-
more, S2CX can provide the SQL/XML query result not only
as traditional uncompressed XML documents, but also

directly in compressed XML format, which reduces data
transmission volume to remote destinations. Even more,
S2CX supports different compressed XML representations
as output formats, i.e., beyond [1] S2CX can now also
generate grammar compressed XML, i.e. the most strongly
compressed updateable XML format.

S2CX uses the SQL/XML syntax to describe the trans-
formation of relational data to XML data, but does not
require a relational database system to support SQL/XML.
Based on a given SQL/XML query, our approach extracts
the generated XML structure and derives a plain SQL query
for collecting the relevant data. Using this generic XML
representation consisting of the plain SQL query result and
the extracted XML structure, we can create different XML
representations, as e.g. plain XML, a SAX event stream, but
also different compressed XML formats. The compressed
XML formats that can be generated by S2CX range from
encoding-based compression formats generated by

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

http://dx.doi.org/10.1016/j.is.2015.09.011
0306-4379/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: stb@uni-paderborn.de (S. Böttcher),

rst@uni-paderborn.de (R. Hartel),
dennis.wolters@uni-paderborn.de (D. Wolters).

Information Systems 56 (2016) 198–213

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2015.09.011
http://dx.doi.org/10.1016/j.is.2015.09.011
http://dx.doi.org/10.1016/j.is.2015.09.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.09.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.09.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.09.011&domain=pdf
mailto:stb@uni-paderborn.de
mailto:rst@uni-paderborn.de
mailto:dennis.wolters@uni-paderborn.de
http://dx.doi.org/10.1016/j.is.2015.09.011


Succinct XML [2], over schema-based compression formats
generated by XSDS [3] to grammar-based compression
formats generated by CluX [4], BPLEX [5], or TreeRePair [6].
Thereby, in scenarios like e.g. SOAP data transmission,
product catalog transmission, or sensor data transmission,
where transferring compressed XML is preferred in com-
parison to transferring plain XML, S2CX can save the
additional XML compression step that would be required,
if SQL/XML queries are executed on databases like Oracle
11 g or DB2 that can output uncompressed XML only.

Contributions

We present S2CX, an approach that fast and flexibly
answers SQL/XML queries with the following properties:

� Given an SQL/XML query and a relational database,
S2CX can generate the query result in different XML
formats: as SAX event stream or in different compressed
XML formats, like e.g. the encoding-based Succinct
format, the schema-based XSDS format or the
grammar-based format of CluX, BPLEX, and TreeRePair.

� From a given SQL/XML query, we derive a generic XML
representation consisting of the tree structure of the
XML result that can be derived from the SQL/XML query
and additional information and text data that is derived
from the result of a plain SQL query that is evaluated on
the underlying relational database. We use this generic
representation to generate either XML or SAX events or
different compressed XML formats, like e.g. Succinct,
XSDS or CluX/BPLEX/TreeRePair.

� Our performance evaluations show that our approach
generates compressed XML faster than evaluating an
SQL/XML query and compressing its result.

� In most cases, our approach generates compressed XML
even faster than Oracle or DB2 can generate uncom-
pressed XML. Even more, in a majority of cases, our
approach together with an additional decompression
step generates uncompressed XML faster than evaluat-
ing SQL/XML queries directly with Oracle 11 g or DB2.
Additionally, our approach scales better, such that
S2CX’s performance speed-up compared to the Oracle

11 g and the DB2 implementations becomes larger with
increasing database size.

� Finally, as our approach does not need an SQL/XML
query engine, it provides a useful technique to answer
SQL/XML queries also on every SQL database system
that does not support the SQL/XML standard.

2. The concept

2.1. Considered subset of SQL/XML

In this paper, we consider the “raw” XML data and
ignore additional XML constructs like comments or pro-
cessing instructions. Therefore, we restrict the XML pub-
lishing functions of SQL/XML to the functions described in
Table 1. These publishing functions are used in combina-
tion with the SQL elements SELECT, FROM, WHERE, ORDER
BY and GROUP BY to form SQL/XML queries. We allow the
queries to be nested at any extent.

2.2. Our example

To describe our approach, we use the following mini-
mized example consisting of the relational database
shown in Fig. 1, which provides the input data for the SQL/
XML query given in Fig. 2 in order to generate the output
XML document given in Fig. 3.

A subquery can be embedded into an SQL/XML query,
as long as this subquery returns a single value as a result.
An example for a subquery can be seen in the lines 6–13 of
Fig. 2. This subquery determines the employee assigned to
a given project.

Executing the query of Fig. 2 on the example database
of Fig. 1 results in the XML document displayed in Fig. 3.
For each project in the example database, a corresponding
element is created (see lines 2–7 in Fig. 3). First, the pro-
ject “Invisibility”, line 2 in Fig. 3, is retrieved by the query
because of the ORDER BY clause in line 16 of Fig. 2. The
subquery in lines 6–13 of Fig. 2 creates the employee of
line 3 in Fig. 3. There is no “comment” element for this
project because the value of the column “Comment” is
null, and therefore, the XMLFOREST function does not

Table 1
Considered XML publishing functions of SQL/XML.

SQL/XML function Description

XMLELEMENT Creates an XML element.
The XMLELEMENT function has the element name as first parameter, the attribute list, i.e. an XMLATTRIBUTES function call, as
an optional second parameter, and the content as a list of optional further parameters.

XMLATTRIBUTES Creates XML attributes.
The XMLATTRIBUTES function has a list of attributes as parameters, where the first part of each attribute is the column name
from where to read the attribute value and the second part is the attribute name.

XMLFOREST Creates a forest of XML trees.
The XMLFOREST function has a list of its contents as parameters, where the first part of each parameter is the content
definition and the second part is the label of the tag by which the content is surrounded.

XMLCONCAT Combines a list of individual XML values to create a single value containing an XML forest.
XMLAGG Aggregates multiple rows, each containing a single XML value, to create a single value containing an XML forest.

The XMLAGG function has a call to an XML publishing function as first parameter and an ORDER BY clause that defines the
order of its content as optional second parameter.

S. Böttcher et al. / Information Systems 56 (2016) 198–213 199



Download English Version:

https://daneshyari.com/en/article/396479

Download Persian Version:

https://daneshyari.com/article/396479

Daneshyari.com

https://daneshyari.com/en/article/396479
https://daneshyari.com/article/396479
https://daneshyari.com

