
Efficient discovery of Target-Branched Declare constraints

Claudio Di Ciccio a,n, Fabrizio Maria Maggi b, Jan Mendling a

a Vienna University of Economics and Business, Institute for Information Business (Building D2, Entrance C), Welthandelsplatz 1, A-1020 Vienna,
Austria
b University of Tartu, Estonia

a r t i c l e i n f o

Available online 2 July 2015

Keywords:
Process mining
Knowledge discovery
Declarative process

a b s t r a c t

Process discovery is the task of generating process models from event logs. Mining
processes that operate in an environment of high variability is an ongoing research
challenge because various algorithms tend to produce spaghetti-like process models. This
is particularly the case when procedural models are generated. A promising direction to
tackle this challenge is the usage of declarative process modelling languages like Declare,
which summarise complex behaviour in a compact set of behavioural constraints on
activities. A Declare constraint is branched when one of its parameters is the disjunction
of two or more activities. For example, branched Declare can be used to express rules like
“in a bank, a mortgage application is always eventually followed by a notification to the
applicant by phone or by a notification by e-mail”. However, branched Declare constraints
are expensive to be discovered. In addition, it is often the case that hundreds of branched
Declare constraints are valid for the same log, thus making, again, the discovery results
unreadable. In this paper, we address these problems from a theoretical angle. More
specifically, we define the class of Target-Branched Declare constraints and investigate the
formal properties it exhibits. Furthermore, we present a technique for the efficient
discovery of compact Target-Branched Declare models. We discuss the merits of our
work through an evaluation based on a prototypical implementation using both artificial
and real-life event logs.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Process discovery is the important initial step of business process management that aims at arriving at an as-is model of
an investigated process [1]. Due to this step being difficult and time-consuming, various techniques have been proposed to
automatically discover a process model from event logs. These log data are often generated by information systems that
support parts or the entirety of a process. The result is typically presented as a Petri net or a similar kind of flow chart and
the automatic discovery is referred to as process mining.

While process mining has proven to be a powerful technique for structured and standardised processes, there is an
ongoing debate on how processes with a high degree of variability can be effectively mined. One approach to this problem is
to generate a declarative process model, which rather shows the constraints of behaviour instead of the available execution

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

http://dx.doi.org/10.1016/j.is.2015.06.009
0306-4379/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ43 1 31336 5222.
E-mail addresses: claudio.di.ciccio@wu.ac.at (C. Di Ciccio), f.m.maggi@ut.ee (F.M. Maggi), jan.mendling@wu.ac.at (J. Mendling).

Information Systems 56 (2016) 258–283

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2015.06.009
http://dx.doi.org/10.1016/j.is.2015.06.009
http://dx.doi.org/10.1016/j.is.2015.06.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.06.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.06.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.06.009&domain=pdf
mailto:claudio.di.ciccio@wu.ac.at
mailto:f.m.maggi@ut.ee
mailto:jan.mendling@wu.ac.at
http://dx.doi.org/10.1016/j.is.2015.06.009


sequences. The resulting models are represented in languages like Declare. In many cases, they provide a way to represent
complex, unstructured behaviour in a compact way, which would look overly complex in a spaghetti-like Petri net.

Declare is a process modelling language first introduced in [2]. The language defines a set of classes of constraints, the
Declare templates, that are considered the most interesting ones for describing business processes. Templates are
parameterised and constraints are instantiations of templates on real activities. For example, the Response constraint,
stating that “activity pay is always eventually followed by activity send invoice” is an instantiation of the Declare template
Response specifying that “an activity x is always eventually followed by an activity y”. Templates have a graphical
representation and formal semantics based on Linear Temporal Logic on Finite Traces (LTLf). This allows Declare models to
be verifiable and executable. Fig. 1a shows the graphical representation of the Response template. Its LTLf semantics is
□ðx-⋄yÞ. Constraints inherit the graphical representation and the LTLf semantics from the corresponding templates.

The current techniques for the discovery of Declare models [3–7] are limited to the discovery of constraints based on the
standard set of Declare templates. This means that the discovered constraints will involve one activity for each parameter specified
in the corresponding templates. However, as described in [2], a constraint can define more than one activity for each parameter. For
example, a Response constraint can be used to express rules like “in a bank, a mortgage application is always eventually followed by
a notification to the applicant by phone or by a notification by e-mail”. In this rule, the “mortgage application” plays the role of the
activation. “Notification by phone” and “notification by e-mail” constitute the so-called targets of the constraint. In this case, we say
that the target parameter branches and, in the graphical representation, this is displayed by multiple arcs connecting the activation
to the branched targets. In LTLf semantics, a branched parameter is replaced by a disjunction of parameters. Fig. 1b shows the
graphical representation of the Response template branching on the target. Its LTLf semantics is □ðx-⋄ðy3zÞÞ.

Target-Branched Declare (TBDeclare) extends Declare by encompassing constraints that branch on target parameters, thus
providing the process modellers with the possibility of defining a much wider set of constraints. In this paper, we address the
problem of mining TBDeclare constraints efficiently. At the same time, the technique we propose aims at limiting the sheer
amount of returned constraints to the set of the most meaningful ones. To this extent, we rely on formal properties of TBDeclare,
i.e., (i) set-dominance and (ii) subsumption hierarchy. Set-dominance is based on the observation that, for example, stating that
“a is always eventually followed by b or c” entails that “a is always eventually followed by b, c or d”, i.e., since the set of targets for
the first constraint is included in the set of targets for the second constraint, the first constraint is stronger than the second one.
In this case, if both constraints hold in the provided event log, only the stronger one will be discovered. In addition, Declare
constraints are not independent, but form a subsumption hierarchy. Therefore, a constraint (e.g., a is eventually followed by b or
c) is redundant if a stronger constraint holds (e.g., a is directly followed by b or c). Also in this case, it is possible to keep the
stronger constraint and discard the weaker one in the discovered model. The key idea of our proposed approach is to exploit set-
dominance and subsumption hierarchy relationships, in combination with the use of interestingness metrics like constraint
support and confidence [5], to drastically prune the set of discovered constraints. We present formal proofs to demonstrate the
merits of this approach and a prototypical implementation for emphasising its feasibility and efficiency.

In this paper, we extend the work presented in [8] in four directions: (i) theoretical discussion, (ii) algorithm presentation,
(iii) implementation improvement, and (iv) evaluation. From a foundational perspective, this paper formally elaborates on how the
monotonicity of LTLf temporal operators can be exploited to prove set-dominance for TBDeclare. The algorithm is presented in
thorough detail here: it describes all the procedures undertaken to mine the constraints, along with trailing examples. The
implementation of the algorithm is also improved now, as an entirely new technique for the computation of AlternateResponse and
AlternatePrecedence constraints has been devised. In this way, a major limitation of the process discovery algorithm presented in [8]
is resolved. Furthermore, this has enabled us to cover a broader range of experiments including the application to an additional
benchmark based on the use of the log provided for the BPI challenge 2014 [9].

Against this background, this paper is structured as follows. Section 2 introduces the essential concepts of LTLf and
Declare as a background of our work. Section 3 provides the formal foundations for mining Target-Branched constraints.
Section 4 defines the construction of a knowledge base from which the final constraint set is built. Section 5 describes the
performance evaluation. Section 6 investigates our contribution in the light of related work. Section 7 concludes the paper
with an outlook on future research.

2. Background

Process mining is the set of techniques that aims at understanding the behaviour of a process, given as input a set of data
reporting the executions of such a process, i.e., an event log L. An event log consists of a collection of traces t

!
i, with iA ½1; jLj�

Fig. 1. Declare (a) and Target-Branched Declare (b) Response templates.

C. Di Ciccio et al. / Information Systems 56 (2016) 258–283 259



Download English Version:

https://daneshyari.com/en/article/396483

Download Persian Version:

https://daneshyari.com/article/396483

Daneshyari.com

https://daneshyari.com/en/article/396483
https://daneshyari.com/article/396483
https://daneshyari.com

