Information Systems 48 (2015) 113-129

Contents lists available at ScienceDirect =

Information Systems

journal homepage: www.elsevier.com/locate/infosys

S - S —

On the undecidability of the equivalence of second-order

tuple generating dependencies

@ CrossMark

Ingo Feinerer, Reinhard Pichler, Emanuel Sallinger, Vadim Savenkov *

Vienna University of Technology, Vienna, Austria

ARTICLE INFO ABSTRACT

Article history:

Received 20 April 2012

Received in revised form

20 February 2014

Accepted 9 September 2014
Recommended by: M. Lenzerini
Available online 18 September 2014

Keywords:

Schema mapping optimization
Database dependencies

Data integration

Data exchange

Second-order tuple generating dependencies (SO tgds) were introduced by Fagin et al. to
capture the composition of simple schema mappings. Testing the equivalence of SO tgds
would be important for applications like model management and mapping optimization.
However, we prove the undecidability of the logical equivalence of SO tgds. Moreover,
under weak additional assumptions, we also show the undecidability of a relaxed notion
of equivalence between two SO tgds, namely the so-called conjunctive query equivalence.

© 2014 Published by Elsevier Ltd.

1. Introduction

Schema mappings play an important role in several areas of
database research, notably in data integration [1], data
exchange [2], peer data management [3], and model manage-
ment [4]. A schema mapping is given by two schemas, called
the source schema and the target schema, as well as a set of
dependencies describing the relationship between the source
and target schema. The most fundamental form of schema
mappings is mappings defined by a set of source-to-target
tuple generating dependencies (s-t tgds): they are first-order
formulas of the form VX(¢(X)— 3yw(X,y)), where the ante-
cedent ¢(X) is a conjunctive query (CQ) over the source
schema and the conclusion w(x,y) is a CQ over the target
schema. Intuitively, such an s-t tgd defines a constraint that
the presence of certain tuples in the source database I
(namely those in the image of some homomorphism h from

* Corresponding author.

E-mail addresses: feinerer@dbai.tuwien.ac.at (I. Feinerer),
pichler@dbai.tuwien.ac.at (R. Pichler),
sallinger@dbai.tuwien.ac.at (E. Sallinger),
savenkov@dbai.tuwien.ac.at (V. Savenkov).

http://dx.doi.org/10.1016/].i5.2014.09.003
0306-4379/© 2014 Published by Elsevier Ltd.

@(x) to I) enforces the presence of certain tuples in the target
database J (s.t. h can be extended to a homomorphism from
Y(x.y) to]).

Several algebraic operators [4,5] on schema mappings
have been intensively studied in recent time like comput-
ing inverses [6-9] and composing schema mappings
[10,11,3,12]. Our work is rather related to the composition
operator. Fagin et al. proved that, in general, s-t tgds are
not powerful enough to express the composition of two
mappings defined by s-t tgds [11]. To remedy this defect,
the so-called second-order tuple generating dependencies
(SO tgds) were introduced in [11]. SO tgds extend s-t tgds
by existentially quantified function-variables and equalities
of (possibly functional) terms in the antecedents of implica-
tions. Details and formal definitions are given in Section 2. It
was shown in [11] that SO tgds capture exactly the closure
under composition of mappings defined by s-t tgds.

Example 1 (Fagin et al. [11]). Consider the following three
schemas. Let S; consist of the unary relation symbol Emp(-)
of employees. Schema S, consists of a single binary relation
symbol Mgr'(-,-) that associates each employee with a
manager. Schema Sz consists of a similar binary relation


www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2014.09.003
http://dx.doi.org/10.1016/j.is.2014.09.003
http://dx.doi.org/10.1016/j.is.2014.09.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.09.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.09.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.09.003&domain=pdf
mailto:feinerer@dbai.tuwien.ac.at
mailto:pichler@dbai.tuwien.ac.at
mailto:sallinger@dbai.tuwien.ac.at
mailto:savenkov@dbai.tuwien.ac.at
http://dx.doi.org/10.1016/j.is.2014.09.003

114 I. Feinerer et al. / Information Systems 48 (2015) 113-129

l‘
™M
—a
™
™M
)
w
c

Fig. 1. Mapping compositions.

symbol Mgr(-,-) that is intended to provide a copy of Mgr’
and an additional unary relation symbol SelfMgr(-) to store
employees who are their own manager.

Consider the mappings Mi; =(51,S2,212) and M3 =
(S, S3,223) with

12 = {¥Ye(Emp(e)— 3m Mgr'(e, m))}
and
253 ={Ve, m(Mgr'(e,m)— Mgr(e,m)), Ye(Mgr'(e,e)— SelfMgr(e))}.

We are looking for the composition of M1, and Mys. It
can be verified that this composition can be expressed by
the SO tgd

o = 3f(ve (Emp(e) — Mgr(e, f(e)))
A Ve (Emp(e)
A (e =f(e)) — SelfMgr(e))).

In this paper, we want to study the equivalence of SO tgds.
Note that the question of equivalence naturally arises in
several scenarios. Fig. 1 illustrates a model evolution scenario,
where data structured under some schema S is first migrated
to a database with schema # and then further transformed to
meet schema U. Now suppose that there exists an alternative
migration path from schema S via T' to schema U. The
question if the two migration paths yield the same result
comes down to checking if the dependencies ¢ and ¢’ (which
represent the respective mapping compositions) are equiva-
lent. Actually, Fig. 1 can also be thought of as illustrating a peer
data management scenario, where some peer with data
structured according to S provides part of its data to some
other peer with schema # (resp. T'). The latter peer in turn
passes this data on to yet another peer with schema U. Now
suppose that a user may access the data only at the peer with
schema U. What happens if some link in this peer data
network is broken, say the one corresponding to mapping
253? Will the path of mappings from S via T’ to U still give the
user full access to the data provided by the peer with schema
S? Testing the equivalence of ¢ and ¢’ is thus crucial for
answering questions of redundancy and reliability in a peer
data network.

The equivalence of mappings is also fundamental to
mapping optimization. As mentioned in [13], optimizing a
mapping ultimately means replacing the mapping by an

“equivalent” one with better (computational) properties. This
raises the question of how the “equivalence” of two mappings
should be defined. Since dependencies are logical formulas,
the most natural notion of equivalence is logical equivalence. In
this paper, we show that logical equivalence of SO tgds is
undecidable. In order to allow for more flexibility in optimiz-
ing mappings, Fagin et al. introduced relaxed notions of
equivalence [13]. In particular, the potential of conjunctive
query (CQ) equivalence for optimizing several kinds of map-
pings was studied in [13]. Intuitively, two mappings are
CQ-equivalent, if conjunctive queries posed against the target
database yield the same result for both mappings (for details,
see Section 2). For instance, it was shown in [11] that the
composition of the mappings Mj; and My3 in Example 1
cannot be represented by an SO tgd without equalities in
the antecedent. On the other hand, ¢ in Example 1 is
CQ-equivalent to ¢’ = 3f(Ve (Emp(e)—Mgr(e,f(e))). Under
the weak additional assumption that the source schema
may have key dependencies, we shall prove the undecidability
of CQ-equivalence of SO tgds.

State of the art: The equivalence of schema mappings has
been an active line of research in recent years, initiated by
Fagin et al. [13]. In particular, the authors introduced two
relaxed notions of equivalence, namely CQ-equivalence and
DE-equivalence (data exchange equivalence). Together with
logical equivalence, we thus have a hierarchy of notions
of equivalence, with logical equivalence being the
most restrictive, and CQ-equivalence being the least
restrictive. Recently, a relativization of CQ-equivalence,
namely bounded CQ-equivalence (or CQ,—equivalence)
has been introduced, which describes equivalence of
schema mappings for CQs with up to n variables [14].
For a recent survey on the topic of equivalence and
optimization of schema mappings, see [15].

We now discuss the results known for the main
concern of this paper, namely whether two given schema
mappings are equivalent. For mappings defined by s-t tgds
and target dependencies in the form of tgds and egds this
problem has been well studied. In the general case, the
logical equivalence of such mappings is undecidable. If the
target tgds admit a finite chase, then the problem becomes
decidable [13], utilizing the chase procedure [16].

For s-t tgds, logical, DE- and CQ-equivalence coincide [13].
Hence, DE- and CQ-equivalence for s-t tgds are of course
decidable. In [13], the undecidability of CQ-equivalence was
proved for mappings consisting of s-t tgds and a weakly
acyclic set of target tgds. The undecidability was extended in
[17] in two directions, namely to mappings with target egds
and from CQ-equivalence to DE-equivalence. A distinc-
tion between the decidability of DE- and CQ-equivalence
was shown in [17], as DE-equivalence is decidable for
mappings based on s-t tgds and a weakly acyclic set of
functional and inclusion dependencies, while CQ-
equivalence is undecidable for s-t tgds with just a single
key dependency per relation.

Altogether, the equivalence of schema mappings has
been studied for the most important first-order schema
mapping languages. The equivalence of SO tgds has not
been studied so far.

A different, yet related problem is deciding whether a
given schema mapping in one class of schema mappings is



Download English Version:

https://daneshyari.com/en/article/396493

Download Persian Version:

https://daneshyari.com/article/396493

Daneshyari.com


https://daneshyari.com/en/article/396493
https://daneshyari.com/article/396493
https://daneshyari.com

