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a b s t r a c t

Discovery of complex patterns such as clusters, outliers, and associations from huge volumes

of streaming data has been recognized as critical for many application domains. However,

little research effort has been made toward detecting patterns within sliding window

semantics as required by real-time monitoring tasks, ranging from real time traffic

monitoring to stock trend analysis. Applying static pattern detection algorithms from scratch

to every window is impractical due to their high algorithmic complexity and the real-time

responsiveness required by streaming applications. In this work, we develop methods for the

incremental detection of neighbor-based patterns, in particular, density-based clusters and

distance-based outliers over sliding stream windows. Incremental computation for pattern

detection queries is challenging. This is because purging of to-be-expired data from

previously formed patterns may cause birth, shrinkage, splitting or termination of these

complex patterns. To overcome this, we exploit the ‘‘predictability’’ property of sliding

windows to elegantly discount the effect of expired objects with little maintenance cost. Our

solution achieves guaranteed minimal CPU consumption, while keeping the memory

utilization linear in the number of objects in the window. To thoroughly analyze the

performance of our proposed methods, we develop a cost model characterizing the

performance of our proposed neighbor-based pattern mining strategies. We conduct an

analysis study to not only identify the key performance factors for each strategy but also

show under which conditions each of them are most efficient. Our comprehensive

experimental study, using both synthetic and real data from domains of moving object

monitoring and stock trades, demonstrates superiority of our proposed strategies over

alternate methods in both CPU processing resources and in memory utilization.

& 2012 Published by Elsevier Ltd.

1. Introduction

We present a new framework for detecting ‘‘neighbor-
based’’ patterns in streams covering two important types
of patterns, namely density-based clusters [18,17] and
distance-based outliers [24,5] applied to sliding windows
semantics [7,8]. Many applications providing monitoring
services over streaming data require this capability of
real-time pattern detection. For example, to understand
the major threats of an enemy’s airforce, a battle field
commander needs to be continuously aware of the ‘‘clusters’’

formed by enemy warcrafts based on the objects’ most
recent positions extracted from the data streams reported
from satellites or ground stations. We evaluate our techni-
ques for this class of applications by mining clusters in the
ground moving target indicator data stream [16]. As another
example, a financial analyst monitoring stock transactions
may be interested in the ‘‘outliers’’ (abnormal transactions)
in the transaction stream, as they are potential indicators for
new trends in the market. We evaluate our techniques for
this class of application by mining outliers in the NYSE
transaction stream [23].

Background on neighbor-based patterns: Neighbor-based
pattern detection techniques are distinct from global cluster-
ing methods [32,22], such as k-means clustering. Global clus-
tering methods aim to summarize the main characteristics of
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huge datasets by first partitioning them into groups (e.g., in
Fig. 1, the objects in the same circles are considered to be in
the same cluster), and then provide abstract information
about the identified clusters, such as cluster centroids, as
output. In these works, the cluster memberships of individual
objects are not of special interest and thus not determined. In
contrast, the techniques presented in this work target a
different scenario, namely when individual objects belonging
to patterns are of importance. For example, during the
battlefield monitoring scenario, the commander may need
to drill down to access the specific information about
individual objects in the clusters formed by enemy warcraft.
This is because some important characteristics of the clusters,
such as the composition of each cluster (e.g., how many
bomb carriers and fighter planes each cluster has) and the
positions of the ‘‘super threats’’ in each cluster (e.g., the bomb
carriers with nuclear bombs) can be learned from this specific
information. Similarly, specific details about each outlier in
the credit card transactions scenario may point to a credit
fraud that may cause serious loss of revenue.

Thus our techniques focus on identifying specific objects
that behave individually (for outliers) or together (for clus-
ters) in some special manner. More specifically, the neighbor-
based patterns are composed of object(s) with specific
characteristics with respect to their local neighborhoods.
Precise definitions of the patterns will be given in Section
2. Fig. 2 shows an example of two density-based clusters and
a distance-based outlier in the dataset from Fig. 1.

Motivation for sliding window scenario: Another important
characteristic distinguishing our work from previous efforts
[13,12] is that we aim to mine for neighbor-based patterns
within the sliding window scenario. The sliding window
semantics, while widely used for continuous query proces-
sing [7], have rarely been applied to neighbor-based pattern
mining. Sliding window semantics assume a fixed window
size (either a fixed time interval or a fixed number of objects),
with the pattern detection results generated based on the
most recent data falling into the current sliding window.
However, in previous clustering work [20,19,13,12], objects
with different time horizons are either treated equally or

assigned weights decaying as their recentness decreases.
These techniques capture the accumulative characteristics
of the full data stream seen so far, rather than isolating and
reflecting about the features in the most recent stream
portion. Using our earlier example, the position information
of the warcraft may only be valid for a certain time period
due to the movement of the monitored objects. In such cases,
the sliding window technique is necessary as it forces the
system to discard the out-of-date information and form
the patterns only based on the most recent positions of the
moving objects.

Challenges: Detecting neighbor-based patterns for slid-
ing windows is a challenging problem. Naive approaches
that run the static neighbor-based pattern detection
algorithms from scratch for each window are often not
feasible in practice, considering the conflict between the
high complexity of these algorithms and the real-time
response requirement for stream monitoring applications.
Based on our experiments (see Section 11), detecting
density-based clusters from scratch in a 50 K-object
window takes around 100 s on our experimental plat-
form, which does not meet the real-time responsiveness
requirement for many interactive applications.

A straightforward incremental approach, which relies
on incrementally maintaining the exact neighbor relation-
ships (we will henceforth use the term ‘‘neighborship’’ for
this concept) among objects, will also fail in many cases.
This is because the potentially huge number of neighbor-

ships can easily raise the memory consumption to unac-
ceptable levels. In the worst case, N2 neighborships may
exist in a single window, with N the number of data points
in the window. Our experiments confirm that this solution
consumes on average 15 times more memory compared to
the from-scratch approach when applied to real datasets
[16,23].

To overcome this serious strain on memory consump-
tion, while still enabling the incremental computation, we
introduce several neighborship abstractions that guarantee
a linear in N memory consumption. However, designing
solutions based on abstracted neighborships now come
with a new shortcoming. Namely, the absence of exact
neighborships makes discounting the effect of the expired
objects from previously detected patterns become highly
expensive in terms of CPU resources. This is because it is
difficult to track what pattern structural changes, such as
‘‘splitting’’ or ‘‘termination’’, will be triggered by objects’
expiration, without knowing which objects are directly
connected to the expired objects and thus are affected.

Proposed methods: To make the abstracted neighborships

incrementally maintainable in a computationally efficient
manner, we propose to exploit an important characteristic
of sliding windows, namely the ‘‘predictability’’ of the
objects’ expiration. Specifically, given a query window with
fixed window size and slide size, we can predetermine all
the windows in which each object can survive. A further
insight gained from this ‘‘predictability’’ property leads us to
propose the notion of the ‘‘predicted views’’. Namely given
the objects in the current window, we can predict the
pattern structures that will persist in subsequent windows
and abstract them into the ‘‘predicted view’’ of each
individual future window. The ‘‘view prediction’’ technique

Fig. 1. Four global clusters determined by global clustering algorithms,

such as K-means.

Fig. 2. Two density-based clusters and one distance-based outlier

determined by neighbor-based pattern detection algorithms.
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