
Practical perfect hashing in nearly optimal space$

Fabiano C. Botelho a,n, Rasmus Pagh c, Nivio Ziviani b

a Data Domain an EMC Company, Santa Clara, USA
b Department of Computer Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
c IT University of Copenhagen, Denmark

a r t i c l e i n f o

Article history:

Received 13 April 2010

Received in revised form

25 May 2012

Accepted 4 June 2012

Recommended by: K.A. Ross
Available online 18 June 2012

Keywords:

Perfect hash functions

Randomized algorithms

Random graphs

Large key sets

a b s t r a c t

A hash function is a mapping from a key universe U to a range of integers, i.e.,

h : U/f0;1, . . . ,m�1g, where m is the range’s size. A perfect hash function for some

set SDU is a hash function that is one-to-one on S, where mZ9S9. A minimal perfect

hash function for some set SDU is a perfect hash function with a range of minimum size,

i.e., m¼ 9S9. This paper presents a construction for (minimal) perfect hash functions that

combines theoretical analysis, practical performance, expected linear construction time

and nearly optimal space consumption for the data structure. For n keys and m¼n the

space consumption ranges from 2:62nþoðnÞ to 3:3nþoðnÞ bits, and for m¼ 1:23n it

ranges from 1:95nþoðnÞ to 2:7nþoðnÞ bits. This is within a small constant factor from

the theoretical lower bounds of 1:44n bits for m¼n and 0:89n bits for m¼ 1:23n. We

combine several theoretical results into a practical solution that has turned perfect

hashing into a very compact data structure to solve the membership problem when the

key set S is static and known in advance. By taking into account the memory hierarchy

we can construct (minimal) perfect hash functions for over a billion keys in 46 min

using a commodity PC. An open source implementation of the algorithms is available at

http://cmph.sf.net under the GNU Lesser General Public License (LGPL).

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Perfect hashing is an elementary problem in computer
science. The goal is to find a collision free hash function
for a given static key set. Perfect hash functions are used
for memory efficient storage and fast retrieval of items
from static sets, such as words in natural languages,
reserved words in programming languages or interactive
systems, item sets in data mining techniques [13,14],
routing tables [43], sparse spatial data [35], and large

web maps [18]. Perfect hashing methods can be used to
construct a data structure to compactly store a static key
set that supports queries to locate keys in one probe. For
applications with only successful searches,1 a key is
simply represented by the value of a perfect hash function
and the key set is not needed to locate information related
with the key. For applications with unsuccessful searches,
the key set has to be represented somehow to handle
collisions.

There are many applications where the search space is
restricted to keys with successful searches. One good
example can be found in the deduplication of objects in
a file system, which maintains an index that maps each
unique object to a disk location of a block that holds it. At
a given point in time, the file system knows all object

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

0306-4379/$ - see front matter & 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.is.2012.06.002

$ This work was performed while the first author was an associated

professor at the Department of Computer Engineering of the Federal

Center for Technological Education of Minas Gerais, Belo Horizonte,

Brazil, and an associated researcher at the Department of Computer

Science of the Federal University of Minas Gerais, Belo Horizonte, Brazil.
n Corresponding author. Tel.: þ1 408 368 7892.

E-mail addresses: fbotelho@datadomain.com (F.C. Botelho),

pagh@itu.dk (R. Pagh), nivio@dcc.ufmg.br (N. Ziviani).

1 A successful search happens when the queried key is found in the

key set and an unsuccessful search happens otherwise.

Information Systems 38 (2013) 108–131

http://cmph.sf.net
www.elsevier.com/locate/infosys
www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2012.06.002
dx.doi.org/10.1016/j.is.2012.06.002
dx.doi.org/10.1016/j.is.2012.06.002
mailto:fbotelho@datadomain.com
mailto:pagh@itu.dk
mailto:nivio@dcc.ufmg.br
dx.doi.org/10.1016/j.is.2012.06.002


identifiers in the system. Therefore, a perfect hash func-
tion can be used to locate the objects on disk without the
need to keep object identifiers in main memory.

In a garbage collector system, it first marks all objects
that can be possibly reached; second, it frees all unrefer-
enced objects that have not been marked. A deduplicated
file system, like the Data Domain2 File System [49]
(DDFS), stores tens of billions of objects, each one identi-
fied by a hash value of at least 20 bytes. For, say, 100
billion objects, we need approximately 2000 gigabytes of
internal memory to keep track of the objects. However, by
leveraging the index DDFS maintains, which has the key
space a perfect hash function needs to be built for, we can
build a more compact data structure. Such a data struc-
ture is composed of two parts: (i) the perfect hash
function; and (ii) a bitmap used to indicate whether a
given object is being referenced. To store such a data
structure we need to store both the function and the
bitmap. The bitmap size depends on the function range. A
perfect hash function, like the one we describe in this
paper, plays a fundamental role in terms of bringing down
the memory requirements. For n keys, we are able to build
functions that have a range of size m¼ 1:23n. The space
consumption for the functions ranges from 1.95 to 2.7 bits
per key for large n. The bitmap would require 1.23 bits per
key. Hence it is possible to bring the space requirements
for the garbage collector from 2000 gigabytes to any-
where between 37 and 46 gigabytes. The important
observation here is the fact that the index has the entire
key space and therefore by having an one-to-one mapping
one does not need to keep the keys in memory.

1.1. Notation and lower bounds

In this paper, a key is a bit string of maximum length L

bits. A key set S is a subset of a key universe U ¼ f0;1gL of
size u¼ 2L. A hash function is a mapping from a key
universe U to a range of integers, i.e.,
h : U/f0;1, . . . ,m�1g, where m is the range’s size. A
perfect hash function (PHF), for some set SDU, is a hash
function that is one-to-one on S, where mZ9S9. A minimal

perfect hash function (MPHF), for some set SDU, is a
perfect hash function with a range of minimum size, i.e.,
m¼ 9S9. We present in Appendix A some of the symbols
and acronyms used throughout the paper.

The theoretical lower bound for a perfect hash function
description was first studied in [27,37] and a simpler
proof was later given in [44]. Consider Mehlhorn’s Theo-
rem III.2.3.6 (a) presented in [37] as a starting point to
derive theoretical lower bounds for the space consump-
tion of the PHFs and MPHFs’ description.

Theorem 1.1 (Mehlhorn [37] Theorem III.2.3.6 (a)). Let

u,m,n be non-negative integers. Given a key universe U of

size u, a class H of functions h : U/f0, . . . ,m�1g is called

ðu,m,nÞ-perfect if for every SDU, 9S9¼ n, there is h 2 H such

that h is perfect for S. Then

9H9Z

u

n

� �
u

m

� �n m

n

� � :

Our focus in this paper is the case where mo3n. For
this constraint, applying Stirling’s approximation
x!� xxe�x

ffiffiffiffiffiffiffiffiffi
2px
p

to log 9H93 yields an information theore-
tical lower bound for a PHF (m¼ 1:23n) of
m�nþ1

2

� �
log 1�n=m

� �
� u�nþ1

2

� �
log 1�n=u

� �
and for an

MPHF (m¼n) of n�u�1
2

� �
log 1�n=u

� �
�1

2 log ð2pnÞ. Con-
sidering ubn, this gives a value of approximately 0:89n

bits for PHFs and approximately 1:44n bits for MPHFs.

1.2. Contributions

In our algorithms we use the well-known idea of
partitioning the input key set into small buckets. When
the key set fits entirely in the internal memory there is no
need for partitioning and we treat it as a single bucket.
This leads to an algorithm that operates on internal
random access memory, which is referred to as RAM

algorithm from now on. When the key set does not fit in
the internal memory we have to do the partitioning and
optimize our algorithm for IO operations. This leads to an
external memory algorithm, which is referred to as EM

algorithm from now on.
The RAM and EM algorithms combine practical per-

formance, expected linear construction time and nearly
optimal space consumption for the resulting data struc-
ture. The engineering to combine several theoretical
results into a practical solution has turned perfect hashing
into a very compact data structure to solve the member-
ship problem when the key universe is static and known
in advance. Perfect hashing is the data structure that
provides the best trade-off between space usage and
lookup time when compared with other open addressing
and chaining hash schemes too index static key sets [7].

The space consumption of our algorithms to store the
resulting functions depends on the relation between m

and n. For m¼ 1:23n, the space consumption is approxi-
mately 1:95nþoðnÞ bits for the RAM algorithm and
2:7nþoðnÞ bits for the EM algorithm. For m¼n, the space
consumption is approximately 2:62nþoðnÞ bits for the
RAM algorithm and 3:3nþoðnÞ bits for the EM algorithm.
We remark that although the EM algorithm generates
functions whose space consumption is O(n) bits, the
hidden constant in the asymptotic notation requires that
n be in the order of hundreds of millions to achieve the
space consumption described above. In practice this is not
a limitation because for smaller sets the RAM algorithm
should be used rather than the EM algorithm which is
designed for large sets that cannot be processed in
internal memory.

2 Data Domain develops a deduplicated file system tailored for a

backup load. It was acquired by EMC2 in July 2009. 3 Throughout this paper we denote log2 x as log x.

F.C. Botelho et al. / Information Systems 38 (2013) 108–131 109



Download English Version:

https://daneshyari.com/en/article/396543

Download Persian Version:

https://daneshyari.com/article/396543

Daneshyari.com

https://daneshyari.com/en/article/396543
https://daneshyari.com/article/396543
https://daneshyari.com

