
Faster proximity searching with the distal SAT

Edgar Chávez a,n, Verónica Ludueña b, Nora Reyes b, Patricia Roggero b

a CICESE, Ensenada, Baja California, Mexico
b Departamento de Informática, Universidad Nacional de San Luis, Argentina

a r t i c l e i n f o

Available online 9 January 2016

Keywords:
Similarity search
Metric spaces
Metric access methods

a b s t r a c t

Searching by proximity has been a source of puzzling behaviors and counter-intuitive
findings for well established algorithmic design rules. One example is a linked list; it is the
worst data structure for exact searching, and one of the most competitive for proximity
searching. Common sense also dictates that an online data structure is less competitive
than the full-knowledge, static version. A counter example in proximity searching is the
static Spatial Approximation Tree (SAT), which is slower than its dynamic version (DSAT).

In this paper we show that changing only the insertion policy of the SAT, leaving every
other aspect of the data structure untouched, can produce a systematically faster index.
We call the index Distal Spatial Approximation Tree (DiSAT). We found that even a random
insertion policy produce a faster version of the SAT, which explains why the DSAT is faster
than SAT. In brief, the SAT is improved by selecting distal, instead of proximal, nodes. This
is the exact opposite of the insertion policy proposed in the original paper, and can be
used in main or secondary memory versions of the index.

We tested our approach with representatives of the state of the art in exact proximity
searching. As it happens often in experimental setups, there are no absolute winners in all
the aspects tested. Our data structure has no parameters to tune-up and a small memory
footprint. In addition it can be constructed quickly. Our approach is among the most
competitive, those outperforming DiSAT achieve this at the expense of larger memory
usage or an impractical construction time.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Data driven applications often require to identify the
objects in a database which are near a given query. For
large databases and/or expensive distance computations a
sequential scan is prohibitive. Two other examples are
query by content in an image, audio or video repository,
and quasi-duplicate detection. This kind of applications
cannot use standard classification techniques because the
number of classes is unbounded (every object in the col-
lection can be considered a class) and hence a plausible

solution is to query the entire collection of objects. In the
above setup a sequential solution does not scale well for
large instances. If the data fits in main memory, which is
the case of modern servers which can easily accommodate
4 Tb of RAM, and the disk is not accessed at all; the
operation with lead complexity will be computing dis-
tances between objects.

If the number of transactions in a repository is large
enough, the cost of building an index can be amortized
over a large number of proximity queries. Over the many
possible choices of indexes, an index with a small memory
footprint is preferred, spending as few bits per database
object as possible. This way all the available memory can
be used to store the objects avoiding fetching them from
secondary memory. This brings the need of optimizing a

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

http://dx.doi.org/10.1016/j.is.2015.10.014
0306-4379/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: elchavez@cicese.mx (E. Chávez),

vlud@unsl.edu.ar (V. Ludueña), nreyes@unsl.edu.ar (N. Reyes),
proggero@unsl.edu.ar (P. Roggero).

Information Systems 59 (2016) 15–47

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2015.10.014
http://dx.doi.org/10.1016/j.is.2015.10.014
http://dx.doi.org/10.1016/j.is.2015.10.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.10.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.10.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.10.014&domain=pdf
mailto:elchavez@cicese.mx
mailto:vlud@unsl.edu.ar
mailto:nreyes@unsl.edu.ar
mailto:proggero@unsl.edu.ar
http://dx.doi.org/10.1016/j.is.2015.10.014


data structure for getting so much discriminative power
using the same number of bits per node.

In spite of a long standing quest for analyzing the
performance of indexing algorithms for proximity sea-
rching [40,44], the relatively weak postulates of the metric
properties prevents making strong predictions and theo-
retically modeling the data structures. New indexing
methods and data structures are tested against a standard
benchmark to establish improvements over previous
work. It is customary in the literature to consider only
distance computations to compare main memory indexes,
the argument is that the total search cost will be driven by
the most expensive operation. In this case this operation
will be computing distances between objects. This sim-
plification does not take into account the full memory
hierarchy, a fine grained analysis of memory usage and
cache optimizations are needed for a real world deploy-
ment. The computed distances complexity model is,
however, easier to compare and in general it will adhere to
searching time performance. In this paper we made
experiments comparing our approach with the state of the
art with both the normalized total search time (which is
the speedup over a sequential scan) and the computed
distances.

We briefly state the problem in a more formal way
to continue the discussion. A metric space is composed
by a universe of objects U, and a distance function
d:U�U-R, such that for any x; y; zAU, dðx; yÞ40,
dðx; yÞ ¼ 0 ⟺ x¼ y, dðx; yÞ ¼ dðy; xÞ (symmetry), and
obeying the triangle inequality: dðx; zÞþdðz; yÞZdðx; yÞ.

Proximity queries are usually of two types, for a given
database SDU with size jSj ¼ n, qAU and rARþ ,
ðq; rÞd ¼ fxASjdðq; xÞrrg denote a range query. The other
type of query is the k nearest neighbor, denoted kNNd(q),
which retrieves the k closest elements to q in S, formally it
retrieves the set RDS such that jRj ¼ k and 8uAR; vAS�R,
dðq;uÞrdðq; vÞ. In our setup, only the distance function can
be used in the index design and traversal, as opposed to
spatial indexing techniques using coordinate information.
An extended catalog of indexes for searching in metric
spaces can be found in [46,14,3,53]. Most indexes use the
triangle inequality to avoid a sequential scan. The distance
between the query and the database objects can be esti-
mated by precomputing some distances to a distinguished
subset of the database [31], this briefly conforms the pivot
based indexes. Other common technique dubbed local
partitioning group data into spatially compact regions.

Our focus is in exact proximity searching as opposed to
approximate algorithms where accuracy can be traded off
for efficiency. However, there are generic techniques to
convert any exact algorithm into approximate by using a
form of aggressive pruning, as described for example,
in [18].

Range queries are more fundamental than k-nearest
neighbor queries, it is enough to use the minimum radius
such that the output of the range query have k elements. In
[29] the authors propose an algorithm to find the proper
query radius without computing additional distances.
Due to this optimal result, it is enough to consider range
searching in the experimental analysis.

The open challenge in proximity searching is indexing
data which is intrinsically high dimensional. Even if the
objects are not assumed to have coordinates the concept of
dimensionality can be translated to metric spaces as well
[5,14]. One common characterization of the intrinsic high
dimensionality consider only the histogram of distances
between database objects. An easy instance will have a
small mean and large standard deviation, while a difficult
instance will be the converse; a large mean and a small
standard deviation, as described in [12]. The literature in
metric access methods is vast, and with different appli-
cation scenarios. The interested reader is referred to one of
the many books and surveys published [14,53,46,28].

The Spatial Approximation Tree (SAT) is an index based
on an alternative approach: rather than dividing the
search space, approach the query spatially. Start at a given
object in the database and get iteratively closer to the
query [37,38,30]. Apart from being algorithmically inter-
esting by itself, it has been shown that the SAT gives an
attractive trade-off between memory usage, construction
time, and search performance.

The Dynamic Spatial Approximation Tree (DSAT) [39] is
an online version of the SAT. It is designed to allow
dynamic insertions and deletions without increasing the
construction cost with respect to the SAT. A very surprising
and unintended feature of the DSAT is the boosting in the
searching performance. The DSAT is faster in searching
even if at construction it has less information than the
static version of the index. For the DSAT the database is
unknown beforehand and the objects arrive to the index at
random as well as the queries. A dynamic data structure
cannot make strong assumptions about the database and
will not have statistics about all the database. Conversely,
the SAT is a static data structure which, in principle, could
take advantage of the full knowledge of the database.
However in [39] it is shown that DSAT is more efficient for
searching than the SAT. This apparently odd behavior has
been puzzling researchers for some time.

We have found the key reason for the performance
improvement of the DSAT when compared to the SAT, this
paper is devoted to the discussion of this finding. The
central idea is to increase the separation between hyper-
planes, which in turn decreases the size of the covering
radius. Those two are the discarding rules of SAT. The
performance improvement consists in selecting distal
nodes instead of the proximal nodes selected in the ori-
ginal algorithm. The final result is a very simple tweak
lowering the number of distance computations with
respect to SAT in every database we tested and for every
range of intrinsic dimensions. The DiSAT, the new data
structure, matches the performance of a competitive
index, the List of Clusters (LC), which is efficient for range
queries, specially in high dimensions [35]. The main pro-
blem with the LC is the construction time and finding the
correct parameter (the cluster size), which implies build-
ing the index several times. In contrast, our approach is
faster to build and with a better tradeoff than the
original SAT.

This paper sum up preliminary ideas discussed in CCE
2011, Mérida, México [16], where we explored some

E. Chávez et al. / Information Systems 59 (2016) 15–4716



Download English Version:

https://daneshyari.com/en/article/396658

Download Persian Version:

https://daneshyari.com/article/396658

Daneshyari.com

https://daneshyari.com/en/article/396658
https://daneshyari.com/article/396658
https://daneshyari.com

