
The similarity-aware relational database set operators

Wadha J. Al Marri a, Qutaibah Malluhi a, Mourad Ouzzani b, Mingjie Tang c,
Walid G. Aref c,n

a Qatar University, Qatar
b Qatar Computing Research Institute, HBKU, Qatar
c Purdue University, USA

a r t i c l e i n f o

Available online 6 November 2015

Keywords:
Similarity query processing
Relational databases
Set operators

a b s t r a c t

Identifying similarities in large datasets is an essential operation in several applications such
as bioinformatics, pattern recognition, and data integration. To make a relational database
management system similarity-aware, the core relational operators have to be extended.
While similarity-awareness has been introduced in database engines for relational operators
such as joins and group-by, little has been achieved for relational set operators, namely
Intersection, Difference, and Union. In this paper, we propose to extend the semantics of
relational set operators to take into account the similarity of values. We develop efficient
query processing algorithms for evaluating them, and implement these operators inside an
open-source database system, namely PostgreSQL. By extending several queries from the
TPC-H benchmark to include predicates that involve similarity-based set operators, we per-
form extensive experiments that demonstrate up to three orders of magnitude speedup in
performance over equivalent queries that only employ regular operators.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Diverse applications, e.g., bioinformatics [18], data com-
pression [36], data integration [24], and statistical classifica-
tion [17], require similarity-awareness capabilities for iden-
tifying similar objects. Several similarity-aware relational
operators that introduce similarity processing at the data-
base engine level have been proposed in the past. These
operators include similarity joins and similarity group-by's
[28,29,26]. However, little attention has devoted to the class
of relational set operations.

In standard SQL, relational set operations are based on
exact matching. However, assume that we want to find

common or different readings that are produced by two
sensors. Assume further that the sensor readings are stored
in two separate tables. The standard SQL set intersect or set
difference (except) operators are not suitable for applying
standard set intersection or set difference on these two
sensor-data tables to get the common/different sensor
readings. The reason is that sensor readings may be similar
but not necessarily identical. Thus, it is desirable to perform
similarity set operations on the two sensor-data tables to
find similar or different readings. In this paper, we introduce
similarity-aware set intersection, difference, and union as
extended relational database operators.

This paper is a generalization of our previous work [16].
In addition to the similarity set intersect operator that we
present in [16], in this paper, we introduce the other simi-
larity set operators, namely similarity set difference and
union. We analyze their corresponding semantics and pro-
vide efficient algorithms for each operator. In addition, we

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

http://dx.doi.org/10.1016/j.is.2015.10.008
0306-4379/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: 200450064@student.qu.edu.qa (W.J. Al Marri),

qmalluhi@qu.edu.qa (Q. Malluhi), mouzzani@qf.org.qa (M. Ouzzani),
tang49@purdue.edu (M. Tang), aref@cs.purdue.edu (W.G. Aref).

Information Systems 59 (2016) 79–93

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2015.10.008
http://dx.doi.org/10.1016/j.is.2015.10.008
http://dx.doi.org/10.1016/j.is.2015.10.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.10.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.10.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.10.008&domain=pdf
mailto:200450064@student.qu.edu.qa
mailto:qmalluhi@qu.edu.qa
mailto:mouzzani@qf.org.qa
mailto:tang49@purdue.edu
mailto:aref@cs.purdue.edu
http://dx.doi.org/10.1016/j.is.2015.10.008


realize these operators inside an open-source relational
database management system (DBMS) and provide an
extensive experimental study of their performance.

The contributions of this paper are as follows:

� We introduce the similarity-aware relational set opera-
tors that extend the standard SQL relational set opera-
tors to produce results based on similarity rather than
on equality (Section 3).

� We develop efficient algorithms for the proposed
similarity-aware relational set operators (Section 4) and
implement them inside PostgreSQL, an open-source rela-
tional database management system [20] (Section 5).

� We evaluate the performance and the scalability of the
proposed algorithms using the TPC-H benchmark [33].
We extend several queries from the TPC-H benchmark
by including predicates that involve similarity-based set
operators. Performance results demonstrate up to three
orders of magnitude enhancement in performance over
equivalent queries that employ only regular relational
operators (Section 5).

2. Related work

Similarity-awareness in relational operators has been
mainly addressed in the relational join and group by
operators. There has been work in terms of devising effi-
cient algorithms as well integrating these similarity-aware
operators inside a database engine. Another line of related
research deals with nearest neighbor search as one form of
similarity. In this section, we go over the main contribu-
tions in these different facets.

A nearest neighbor (NN) search finds the closest object to
a query focal point. There are mainly two variants, the k-NN
[25] and all-NN [8] operations. A k-NN operation identifies
the k closest data objects to a query focal point, whereas the
all-nearest-neighbor operation finds for each object in the
outer table, its closest object(s) in the inner table. Lian and
Chen [14] propose an efficient similarity search algorithm by
employing pruning techniques to find objects in selected
subspaces instead of the full space. Other performance
improvement mechanisms are achieved by exploiting
indexing structures, e.g., the M-tree [7] and the slim-tree [34].

Similarity join retrieves objects from the two relations
that overlap based on a predefined threshold. Many types
of similarity join have been proposed, e.g., [38,11,29,1,5].
k-nearest neighbor join (k-NN join) is a similarity join that
combines each element in a dataset, say R, with the k-
nearest elements in another dataset, say Böhm and Krebs
[5] compute the k-NN join using the multipage index
(MuX). MuX is an R-tree-based method to solve the opti-
mization conflicts between the CPU cost and the I/O cost.
MuX uses large-sized pages for the input data to reduce
the I/O cost. Then, a secondary structure, namely buckets,
with a much smaller size within pages, is used to optimize
the CPU time. Recent approaches have investigated
employing MapReduce to perform k-NN join [15] and
hamming distance based similarity join [32].

The Quickjoin [13] is a metric-space algorithm that works
by processing a nested-loops join on smaller subsets that are

obtained after partitioning the dataset recursively. Join-Around
[29] uses some properties of the distance and k-NN joins. In
addition to having each object from the first set join with its
closest object in the second set, only the pairs within a pre-
specified distance or radius are reported. There are several
similarity join algorithms that are based on the application of
grids to multidimensional datasets, e.g., Epsilon Grid Order
(EGO) [4] and the Generic External Space Sweep (GESS) [9].
EGO is designed to process the similarity join on massive
datasets. This solution is based on obtaining a sort order of the
data objects by setting an equi-distant grid with cell length ϵ
over the data space and comparing the grid cells lexico-
graphically. GESS associates with each point an ϵ-length
hypercube and then executes an intersection join on these
hypercubes.

The Trie-Join [35], Fast-Join [36], ED-Join [37], Part-
Enum [1], and SSjoin [6] are methods for string similarity
joins. In the Trie-Join approach, a trie-based structure
indexes the strings and a sub-trie pruning technique is
used to efficiently perform the similarity join. SSjoin,
denoting set similarity join, presents strings as sets of q-
grams. Based on the string sets, SSjoin applies an over-
lapping function to exclude the non-matching string pairs.
Then, distance computation is performed on the pairs that
satisfy the overlapping condition. The other string simi-
larity joins, namely, Part-Enum, Fast-join, and Ed-Join,
employ a filter-and-refine framework. In the filter step,
they produce candidate pairs by using string signatures. In
the refine step, the candidate pairs are tested to see
whether they are part of the final result or not.

The similarity group-by operator assigns every object
to a group based on the similarity condition. A similarity-
based group-by is useful in data mining applications, e.g.,
clustering, and duplicate detection and elimination.
Group-by-Context and Group-by-Similarity are presented
in [21–24,31]. Group-by-Context provides a mechanism for
applying user-defined functions for grouping purposes. In
contrast, Group-by-Similarity is a special case of context-
aware grouping that provides the possibility to describe
the similarity among tuples and grouping strategies in a
descriptive way. In [28], the authors extend the standard
database group-by operation to form groups of similar
tuples. They implement three instances of the similarity
grouping operator. Unsupervised Similarity Group-by (U-
SGB) produces similarity groups based only on the speci-
fication of group properties (compactness and size).
Supervised Similarity Group Around (SGB-A) forms the
groups around certain central points of interest and
restricts their extent based on group properties. Super-
vised SGB using Delimiters (SGB-D) identifies groups
based on a set of delimiting points.

In order to enable similarity queries into an RDBMS, an
extension to SQL to support nearest-neighbor queries is
studied in [10]. This extension offers the ability to express the
nearest neighbor queries in the RDBMS through a user-
defined predicate termed NN-UDP. Another work [3,2]
allows expressing similarity queries in SQL and executing
them via a similarity retrieval engine, called SIREN (SImilarity
Retrieval ENgine). SIREN is a service implemented between
an RDBMS and the application programs. It processes and
answers every similarity-based SQL command sent from the

W.J. Al Marri et al. / Information Systems 59 (2016) 79–9380



Download English Version:

https://daneshyari.com/en/article/396660

Download Persian Version:

https://daneshyari.com/article/396660

Daneshyari.com

https://daneshyari.com/en/article/396660
https://daneshyari.com/article/396660
https://daneshyari.com

