
Combining user and database perspective for solving keyword
queries over relational databases

Sonia Bergamaschi a, Francesco Guerra a,n, Matteo Interlandi b,
Raquel Trillo-Lado c, Yannis Velegrakis d

a DIEF – University of Modena and Reggio Emilia, Italy
b UCLA – University of California, Los Angeles, USA
c DIIS – University of Zaragoza, Spain
d DISI – University of Trento, Italy

a r t i c l e i n f o

Article history:
Received 15 June 2014
Received in revised form
18 July 2015
Accepted 21 July 2015
Recommended by: Martin Theobald
Available online 30 July 2015

Keywords:
Keyword search over relational databases
Hidden Markov Models
Dempster–Shafer Theory
Machine learning

a b s t r a c t

Over the last decade, keyword search over relational data has attracted considerable
attention. A possible approach to face this issue is to transform keyword queries into one
or more SQL queries to be executed by the relational DBMS. Finding these queries is a
challenging task since the information they represent may be modeled across different
tables and attributes. This means that it is needed to identify not only the schema
elements where the data of interest is stored, but also to find out how these elements are
interconnected. All the approaches that have been proposed so far provide a monolithic
solution. In this work, we, instead, divide the problem into three steps: the first one,
driven by the user's point of view, takes into account what the user has in mind when
formulating keyword queries, the second one, driven by the database perspective,
considers how the data is represented in the database schema. Finally, the third step
combines these two processes. We present the theory behind our approach, and its
implementation into a system called QUEST (QUEry generator for STructured sources),
which has been deeply tested to show the efficiency and effectiveness of our approach.
Furthermore, we report on the outcomes of a number of experimental results that we
have conducted.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Keyword search has become the de-facto standard for
searching on the web. Structured data sources contain a vast
amount of information that is significant to be available for
querying. Typically, query interfaces consist of web forms
that allow predefined queries to be posed on their contents.

Besides, web search engines index the content of these
sources (the so-called hidden web) through the results of
these web form queries, seen as free text. Apart from the fact
that this restricts the kind of data that can be searched, the
great deal of semantic information provided by the structure
of the data, e.g., the schema, is basically lost. This gave rise to
a special interest in supporting keyword search over struc-
tured databases [1] in ways that are as effective as those
offered on text data and at the same time exploit as much as
possible the structure of the data that databases provide.

Many approaches exploit full-text search functionalities
natively implemented in the DBMS, such as the contains

function in SQL server and the match-against function in
MySQL, to discover the attributes of the database containing

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

http://dx.doi.org/10.1016/j.is.2015.07.005
0306-4379/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: sonia.bergamaschi@unimore.it (S. Bergamaschi),

francesco.guerra@unimore.it (F. Guerra),
minterlandi@cs.ucla.edu (M. Interlandi),
raqueltl@unizar.es (R. Trillo-Lado), velgias@disi.unitn.eu (Y. Velegrakis).

Information Systems 55 (2016) 1–19

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2015.07.005
http://dx.doi.org/10.1016/j.is.2015.07.005
http://dx.doi.org/10.1016/j.is.2015.07.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.07.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.07.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.07.005&domain=pdf
mailto:sonia.bergamaschi@unimore.it
mailto:francesco.guerra@unimore.it
mailto:minterlandi@cs.ucla.edu
mailto:raqueltl@unizar.es
mailto:velgias@disi.unitn.eu
http://dx.doi.org/10.1016/j.is.2015.07.005


the query keywords at run-time. Then, they construct the
answer set by combining tuples containing different query
keywords and selecting those combinations considered most
likely to be what users were looking for [2–12]. All these
approaches are typically heuristic-based, without a clear
specification of the steps required to answer the keyword
query. In this work, we advocate that there is a need for a
more principled approach to keyword searching on struc-
tured data; in particular, we believe that keyword search on
structured sources requires three fundamental steps. Existing
works consist of either a monolithic end-to-end solution that
provides no clear distinction of these three steps, or are
focused on only some of them, considering some straightfor-
ward implementation of the remaining.

The three fundamental steps we consider are first to match
the keywords to the database structures, then to discover
ways these matched structures can be combined, and finally
to select the best matches and combinations such that the
identified database structures represent what the user had in
mind to discover when formulating the keyword query. The
first step is focused on trying to capture the meaning of the
keywords in the query as they are understood by the user, and
express them in terms of database terms, i.e., the metadata
structures of the databases. In some sense, it provides the user
perspective of the keyword query and it does so by providing a
mapping of the keywords into database terms. This step is
referred to as the forward analysis step since it starts from the
keywords and moves towards the database. The second step
tries to capture the meaning of the keywords as they can be
understood from the point of view of the data engineers who
designed that database organization, and express them in
semantically coherent units of database structures containing
the images of the keywords specified by the first step. So, in
some sense, it provides the database perspective of the key-
word query and it does so by providing the relationships
among the images of the keywords. This task is referred to as
the backward analysis step since it starts from the database
structures and moves towards the query keywords through
their images. The third step provides a ranking of the coherent
units of database structures that the second step produced
after selecting those that are more promising, i.e., those whose
semantics more likely express what the user had in mind
while was formulating the keyword query.

In our previous works we have studied different aspects
of the keyword search problem over relational databases.
The KEYMANTIC [13,14] system was focused on the first
step. It provided a solution based on a bipartite graph
matching model where user keywords were matched to
database schema elements by using an extension of the
Hungarian algorithm. KEYMANTIC is one of the first solu-
tions that deals with the problem of querying structural
databases through keywords when there is no prior access
to the database content to build any indexes, thus, relying
on semantic information of the database meta-data. This
feature of KEYMANTIC makes it especially appropriate for
keyword-based search on federated database systems and
for exploring data sources in the hiddenweb. KEYRY [15,16]
extended KEYMANTIC by providing a probabilistic frame-
work, based on a HMM, to match keywords into database
schema elements. Both works deal with the first step of the
process described previously, i.e., the user perspective step.

Our experience with these systems made clear that this was
not enough for a complete solution. These systems were the
motivation for the principled, holistic and unified frame-
work presented in this work.

The main contributions of the current paper are the
following: (i) we introduce a principled 3-step model for the
keyword search problem over structured databases; (ii) we
develop two different implementations of the first step, one
that exploits heuristic rules and one that is based on machine
learning techniques. Both aim at finding the appropriate
Hidden Markov Model specification to generate the right
mapping of the query keywords into database structures;
(iii) we define an implementation of the second step based
on Steiner Tree discovery which exploits a mutual information-
based distance as edge weight and which works at the schema
level instead of the instance level; (iv) we provide a probabil-
istic framework founded on the Dempster Shafer Theory that is
able to combine the first two steps andmodalities in away that
permits the system to promptly adapt to different working
conditions by selecting the best combination among them;
(v) we implement all the above in a system called QUEST
(QUEry generator for STructured sources) [17] and provide the
details of its implementation; and finally (vi) we perform an
extensive set of experiments that offer a deep understanding of
the whole process, its effectiveness and efficiency.

The remainder of the paper is as follows. First, the prin-
cipled 3-step approach is introduced and our proposed frame-
work is formally defined in Section 2. The implementation of
each of the three steps in our developed QUEST prototype
follows in Section 3. The relationship of our framework with
the related works alongside our own previous works on the
topic is explained in Section 4. Finally, the results of our
extensive experimental evaluation are discussed in Section 5.

2. The three-step framework

As a data model for the structured database we assume
the relational model, however the framework can be easily
extended to other structured models as well.

We assume an infinite set A of attribute names, R of
relation names, and V of value domains. A tuple is a finite
set of attribute name–value pairs 〈A1: v1;A2: v2;…;An: vn〉
where AiAA, viAVi with ViAV, for i¼1…n, and AiaAj if
ia j. The schema of the tuple is the 〈A1:V1;A2:V2;…;An:Vn〉

and its arity is the number n. The domain Vi is referred to as
the domain of the attribute Ai and will be denoted as
DomðAiÞ, for i¼ 1…n. A relation instance is a finite set of
tuples, all with the same schema. The schema of the relation
instance is the common schema of its tuples and its
cardinality the number of tuples it consists of. A relation is
a pair 〈R; IR〉, where RAR, referred to as the relation name,
and IR is a relation instance. The schema of a relation 〈R; IR〉
is the schema of its relation instance, and will be denoted as
RðA1:V1;…;An:VnÞ, where the 〈A1:V1;…;An:Vn〉 is the
schema of the relation instance IR. In what follows, when-
ever there is no risk of confusion, the name Rwill be used to
refer to the whole relation 〈R; IR〉. Furthermore, the indica-
tion of the domains will be omitted leading to the simpli-
fied expression of the relation schema as RðA1;A2;…;AnÞ.
Finally, the notation jRj will denote the arity of the relation
R and the jIRj the cardinality of its relation instance [18].

S. Bergamaschi et al. / Information Systems 55 (2016) 1–192



Download English Version:

https://daneshyari.com/en/article/396662

Download Persian Version:

https://daneshyari.com/article/396662

Daneshyari.com

https://daneshyari.com/en/article/396662
https://daneshyari.com/article/396662
https://daneshyari.com

