
Efficient processing of enumerative set-based queries

Guoping Wang a, Chee-Yong Chan b,n

a Shannon Lab, Huawei, No. 360, Jiangshu Road, Binjiang District, Hangzhou City, Zhejiang Province 310051, China
b Department of Computer Science, School of Computing, National University of Singapore, Computing 1, 13 Computing Drive,
Singapore 117417, Singapore

a r t i c l e i n f o

Article history:
Received 22 September 2014
Received in revised form
7 July 2015
Accepted 11 August 2015
Recommended by: J. Van den Bussche
Available online 4 September 2015

Keywords:
Set-based queries
Multi-query optimization
Relational database systems

a b s t r a c t

Many applications often require finding sets of entities of interest that meet certain
constraints. Such set-based queries (SQs) can be broadly classified into two types: opti-
mization SQs that involve some optimization constraint and enumerative SQs that do not
have any optimization constraint. While there has been much research on the evaluation
of optimization SQs, there is very little work on the evaluation of enumerative SQs, which
represent the most fundamental fragment of set-based queries. In this paper, we address
the problem of evaluating enumerative SQs using RDBMS. While enumerative SQs can be
expressed using SQL, existing relational engines, unfortunately, are not able to efficiently
evaluate such queries due to their complexity. In this paper, we propose a novel evaluation
approach for enumerative SQs. Our experimental results on PostgreSQL demonstrate that
our proposed approach outperforms the conventional approach by up to three orders of
magnitude.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Many applications often require finding sets of entities
of interest that meet certain constraints. Such set-based
queries (SQs) can be broadly classified into two types:
optimization SQs that involve some optimization constraint
and enumerative SQs that do not have any optimization
constraint. For example, consider a relation R(id ,type,city,
price,duration,rating) shown in Table 1 that stores infor-
mation about various places of interest (POI), where type
refers to the category of the POI (e.g., museum, park),
duration refers to the recommended duration to spend at
the POI and rating refers to the average visitors’ rating of
the POI. Suppose that a tourist is interested to find all tour
trips near Shanghai consisting of POIs that meet the

following constraints: the trip must include both Shanghai
(S.H.) and Suzhou (S.Z.) cities, the trip must include POIs of
type museum and park, and the total duration of the trip
should be between 6 and 10 h. There are three packages
that satisfy the above query: t t,1 2{ }, t t t, ,1 2 3{ } and t t t, ,1 2 5{ }.
The above is an example of an enumerative SQ to find all
sets of POIs that satisfy the given constraints. If the query
had an additional constraint to minimize the total cost of
the tour package, it would become an optimization SQ.

As another example, suppose that an employer is look-
ing to hire a team of language translators for a project that
meet the following constraints: each team member must
know English; the team collectively must be knowledgeable
in French, Russian, and Spanish; the team consists of at least
two translators; and the total monthly salary of the team is
no more than $50K . Consider a relation Translator (id,loca-
tion,salary,english,french,russian,spanish) that stores infor-
mation about language translators available for hire, where
the four binary valued attributes english, french, russian, and
spanish indicate whether a translator is knowledgeable in

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

http://dx.doi.org/10.1016/j.is.2015.08.005
0306-4379/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ65 65166736.
E-mail addresses: wang.guoping@huawei.com (G. Wang),

chancy@comp.nus.edu.sg (C.-Y. Chan).

Information Systems 55 (2016) 54–72

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2015.08.005
http://dx.doi.org/10.1016/j.is.2015.08.005
http://dx.doi.org/10.1016/j.is.2015.08.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.08.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.08.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.08.005&domain=pdf
mailto:wang.guoping@huawei.com
mailto:chancy@comp.nus.edu.sg
http://dx.doi.org/10.1016/j.is.2015.08.005

the specific languages, location represents the translator's
living place, and salary represents the translator's expected
monthly salary. To browse through all the possible teams
for hiring, the employer executes an enumerative SQ on the
Translator relation.

Another application of enumerative SQs is in the area
of set preference queries [1–3], which computes all sets of
entities of interest that satisfy some preference function.
Consider again our example on hiring translators. In
addition to the previously discussed constraints, the
employer could prefer to hire a team where (a) the team
members are located close to one another and (b) their
total salary is low. Thus, this set preference query is
essentially a skyline [4] set-query to retrieve non-domi-
nated teams where the members have close proximity and
low total salary. The most general approach to evaluate
skyline set-queries is to first enumerate all the candidate
sets followed by pruning away the dominated sets.
Although there has been recent work to integrate these
two steps [3], such optimization is applicable only for
restricted cases (e.g., when the sets are of fixed cardinality
and the preference function satisfies certain properties);
and is not applicable for queries such as our example
query. Therefore, efficient algorithms to evaluate enu-
merative SQs are essential for the efficient processing of
set preference queries.

There has been much research on evaluating optimi-
zation SQs where the focus is on heuristic techniques to
compute approximately optimal or incomplete query
results (e.g., [3,5–10]). However, to the best of our
knowledge, there has not been any prior work on the
evaluation of enumerative SQs. Enumerative SQs are
essentially a generalization of conventional selection
queries to retrieve a collection of sets of tuples (instead of
a collection of tuples), and they represent the most fun-
damental fragment of set-based queries.

In this paper, we address the problem of evaluating
enumerative SQs using RDBMS. For convenience, we refer
to enumerative SQs as simply SQs in the rest of this paper.

While SQs can be expressed using SQL, existing rela-
tional engines, unfortunately, are not able to efficiently
optimize and evaluate such queries due to their com-
plexity involving multiple self-joins and/or view expres-
sions. In this paper, we propose a novel evaluation
approach for SQs. The key idea is to first partition the input
relation into disjoint blocks based on the different com-
binations of constraints satisfied by the tuples and then
compute the answer sets by appropriate combinations of
the blocks. In this way, a SQ is evaluated as a collection of
cross-product queries (CPQs). However, applying existing
multiple query optimization (MQO) techniques for this

evaluation problem is not effective for two reasons. First,
the scale of the problem could be very large involving
hundreds of CPQ evaluations. Existing MQO heuristics,
which are mainly designed for optimizing a handful of
queries, are not scalable for our problem. Second, as the
queries here are CPQs (and not join queries), existing MQO
techniques, which are based on materializing and reusing
common subexpressions, is not effective as the cost of
materialization exceeds the cost of recomputation.

In this paper, we make three key contributions to the
study of SQs. First, we experimentally show that conven-
tional RDBMS are unable to efficiently evaluate SQs. Second,
we propose a novel approach to evaluate SQs in terms of a
collection of CPQs. Our approach includes both effective
MQO heuristics designed to optimize a large collection of
CPQs and efficient evaluation techniques that exploit the
properties of set predicates in the SQs. Third, we demon-
strate the effectiveness of our approach with a compre-
hensive experimental evaluation on PostgreSQL which
shows that our approach outperforms the conventional
SQL-based solution by up to three orders of magnitude.

The rest of this paper is organized as follows. In Section 2,
we formally introduce set-based queries (SQs) and a
fragment of SQs referred to as basic SQs (BSQs). Section 3
presents some preliminaries. Section 4 presents a baseline
SQL-based solution to evaluate SQs. Section 5 presents our
main-memory based approach to evaluate BSQs, and Section
6 extends the approach to evaluate BSQs on disk-based data.
In Section 7, we extend our approach to evaluate general
SQs beyond BSQs. Section 8 presents an experimental per-
formance evaluation of the proposed techniques. Section 9
presents related work, and we conclude our paper in
Section 10.

2. Set-based queries

In the simplest form, a set-based query (SQ) Q is defined
by an input relation R, which represents a collection of
entities of interest, and an input set of predicates P on R.
The query's result is a collection of all the subsets of R such
that each subset satisfies the predicates in P.

For convenience, we introduce an extended SQL syntax
to express SQs more explicitly. The example SQ in Section 1
can be expressed by the following extended SQL query.

Q

R

v v
v v
v v

v v

: SELECT

FROM SET S
WHERE in S AND in S
AND in S AND in S
AND . city S. H. AND . city S. Z.

AND . type museum AND . type park

AND 6 SUM S. duration 10

poi

1 2

3 4

1 2

3 4

⁎
()

= =
= =

≤ () ≤

The “SET(R) S” in the from-clause specifies S as a set
variable whose value is a subset of tuples in relation R.
Each of the predicates of the form “vi in S” specifies vi as a
member variable representing a member of the set variable
S. Note that the values of the member variables are not
necessarily distinct. Each of the next four predicates

Table 1
An example relation R.

id type city price duration rating

t1 Museum S.H. 50 4 7
t2 Park S.Z. 70 3 5
t3 Museum S.Z. 60 3 8
t4 Shopping S.H. 80 5 7
t5 Shopping H.Z. 90 2 9

G. Wang, C.-Y. Chan / Information Systems 55 (2016) 54–72 55

Download English Version:

https://daneshyari.com/en/article/396665

Download Persian Version:

https://daneshyari.com/article/396665

Daneshyari.com

https://daneshyari.com/en/article/396665
https://daneshyari.com/article/396665
https://daneshyari.com

