
Cost-based holistic twig joins$

Radim Bača n, Petr Lukáš, Michal Krátký
Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VŠB – Technical University of Ostrava, Czech
Republic

a r t i c l e i n f o

Article history:
Received 10 December 2014
Received in revised form
20 March 2015
Accepted 21 March 2015
Recommended by: D. Shasha
Available online 31 March 2015

Keywords:
XML
Query processing
Cost-based approaches
Holistic algorithms
Access path

a b s t r a c t

An evaluation of XML queries such as XQuery or XPath expressions represents
a challenging task due to its complexity. Many algorithms have been introduced to cope
with this problem. Some of them, called binary joins, evaluate separated parts of a query
and subsequently merge intermediate results, while the others, called holistic twig joins,
evaluate a query as a whole. Moreover, these algorithms also differ in what index data
structure they use to handle XML data. There exist cost-based approaches utilizing binary
joins and various index data structures; however, they share a limitation. The limitation is
that they cannot perform a join between query nodes not having a direct XPath
relationship. Such a join can be advantageous especially if their joint selectivity is high.
Since holistic joins work with all query nodes they overcome this limitation. In this article,
we introduce such a holistic twig join called CostTwigJoin. To the best of our knowledge,
CostTwigJoin is the first holistic join capable of combining various index data structures
during an evaluation of an XML query. Usage of the holistic join has yet another advantage
for cost-based approaches: an optimizer does not have to resolve the order of binary joins;
therefore, the search space is reduced. In this article, we perform thorough experiments
on hundreds of queries to evaluate our approach and demonstrate its advantages.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

All existing cost-based approaches in XML query processing
are based on a selection of an appropriate algebraic execution
query plan according to a cost model [36,16,42,12,35]. Such
a cost-based approach can significantly improve the perfor-
mance of XML query processing, especially for highly selective
queries (i.e. queries producing small results) that are very
common in practice. The above-mentioned works pick one
out of two join algorithms for each algebraic operator and
resolve their ordering. There are two basic access paths used in
join algorithms: (1)merge access path [1,41,39], where the basic

idea is based on a merge of input sequences, and (2) naviga-
tional access path [14–16], where a number of DOM-like
operations are processed using the previous intermediate
results.

In spite of the effectiveness of existing cost-based
approaches, they work only for binary joins [1,41,39,15].
The binary joins work only with a pair of query nodes.
However, there exists a large family of algorithms called
holistic joins [5–7,21,22] working with all query nodes
simultaneously and having two major advantages when
compared to binary joins: (1) the intermediate result is
minimized even without sophisticated query optimizations
[5], (2) their optimality has been proved for certain query
types [5,2]. In [34], a thorough comparison of binary and
holistic join algorithms can be found, where both use the
merge access path. The conclusion of this work is that the
holistic join outperforms the binary join if the selectivity of
a query is high. Note that high selectivity is important for

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

http://dx.doi.org/10.1016/j.is.2015.03.004
0306-4379/& 2015 Elsevier Ltd. All rights reserved.

$ This work is partially supported by SGS, VŠB – Technical University of
Ostrava, No. SP2014/211 and No. SP2015/170, Czech Republic.

n Corresponding author.
E-mail addresses: radim.baca@vsb.cz (R. Bača),

petr.lukas@vsb.cz (P. Lukáš), michal.kratky@vsb.cz (M. Krátký).

Information Systems 52 (2015) 21–33

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2015.03.004
http://dx.doi.org/10.1016/j.is.2015.03.004
http://dx.doi.org/10.1016/j.is.2015.03.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.03.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.03.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.03.004&domain=pdf
mailto:radim.baca@vsb.cz
mailto:petr.lukas@vsb.cz
mailto:michal.kratky@vsb.cz
http://dx.doi.org/10.1016/j.is.2015.03.004


a significant improvement of all cost-based approaches. On
the other hand, all the existing holistic joins are based only
on the merge access path which significantly limits their
usage in cost-based approaches.

To overcome this problem, we introduce a holistic join
algorithm supporting both access paths. To demonstrate
this idea, we extend the state-of-the-art holistic algorithm
GTPStack [2] and call this extended version CostTwigJoin.
Before the contribution of this paper is described in more
detail, let us first mention some preliminaries.

XPath or even XQuery are robust languages supporting
versatile semantics and we are focused mainly on searching
XML nodes satisfying defined relationship constraints, and
therefore, a simplified model of a query should be used.
Twig Pattern Query (TPQ) is the simplest model used by
many approaches [1,5,21,33,41]. It is naturally modeled as
a tree, where each node corresponds to an XPath step.
Single and double lined edges correspond to parent–child
(PC) and ancestor–descendant (AD) relationships, respec-
tively. A formal definition of TPQ is given in Section 3.

Example 1.1. Consider the following XPath expression:

//b½:==c ½:==e and :==f� �=d:
The corresponding TPQ can be found in Fig. 1(b).

The problem of evaluating an XPath or an XQuery
expression is then often transformed into a problem of
searching for TPQ matches. A query match is a tuple of XML
nodes satisfying the following conditions: (1) every XML
node corresponds to exactly one TPQ query node, and (2)
relationships between XML nodes correspond to relation-
ships between query nodes.

Many existing algorithms [1,2,5,13,41] are designed so
that an inverted list with XML nodes is used in order to
support an efficient merge (i.e. they use the merge access
path). In such algorithms, lists of XML nodes are accessed
according to the tag name and a merge join is performed
during a sequential scan of the lists. This technique has been
shown to be very efficient and robust in many situations.
Moreover, holistic twig joins can use the inverted list more
efficiently and with less memory requirements than binary
joins can [25]. However, in some cases both approaches can
spend a lot of time reading and processing many irrelevant
XML nodes from the inverted list, especially if a query
contains a highly selective part.

Example 1.2. When searching all matches of the TPQ in
Fig. 1(b) in the XML tree in Fig. 1(a), we retrieve two query
matches

½b1; c1; e1; f 1;d1� and ½b1; c1; e1; f 1; d2�;
however, there are significantly more XML nodes read from

the inverted list. That is caused by the fact that we read all
XML nodes corresponding to each tag.

The problem of reading many irrelevant XML nodes is
addressed by several existing cost-based approaches [36,16,
42,12,35]. However, the high selectivity of a query is some-
times determined by a join of query nodes not having any
direct XPath relationship (we call them distinct query nodes).
Since the existing cost-based approaches do not consider
merge joins between distinct query nodes, it can happen
that the most selective join is not considered by any cost-
based approach.

Example 1.3. In the previous example, we see that the high
selectivity of the result is determined by a joint occurrence
of #e, #f, and #b query nodes not having a direct XPath
relationship. The existing approaches create a query plan,
where merge joins of #e and #c, #f and #c, and #b and #c
are considered. However, it means that many XML nodes
corresponding to #c are unnecessarily accessed in all of
these joins. Clearly, it is more efficient to merge lists
corresponding to the distinct #e, #f, and #b query nodes
first since we find just one triplet (b1, e1, f1). The b1 node in
this triplet is then used to find the remaining nodes c1, d1,
and d2 by a simple scan of the b1's subtree, i.e. the
navigational access-path is used.

In this article, we show how to choose a merge of the
highly selective query nodes regardless of whether there is
a direct XPath relationship between the query nodes or not.
This can be achieved since holistic joins process all query
nodes during a single run. Therefore, in this article, we
extend an existing holistic join algorithm to integrate both
access paths.

Now let us summarize the contributions of this article: (1)
an introduction of the CostTwigJoin algorithm that is capable
of using merge and navigational access paths during query
processing and that minimizes the intermediate result size
using a merge of lists corresponding to distinct query nodes,
(2) a cost-based optimization framework to select an appro-
priate index data structure for processing each query node, (3)
thorough experiments showing the main advantages of our
approach for a large number of queries and various data
collections.

The paper is organized as follows. Section 2 analyzes
related works. In Section 3, we depict a model of an XML
document and the supported query constructs. Section 5
introduces the CostTwigJoin algorithm and its features. In
Section 6, we thoroughly describe our cost-based optimiza-
tion framework. Section 7 experimentally verifies the
advantages of our approach.

2. Related work

Various TPQ processing approaches have been devel-
oped [1,5–7,21,22,33,41,13,2].

Let us start with techniques orthogonal to our approach
which can significantly reduce the number of irrelevant
nodes read from indices. The first type of these techniques
uses a summary tree for more fine-grained access to the
inverted list [7,3]. In other words, these techniques use
different key types of inverted lists (called partition labels).

a1

b1 b2

c1 d1 d2 c2 d3

e2

b3

c3 d4

f2

x1

c4 d5

e3 f3

…

e1 f1

#b

#c

#e #f

#d

Fig. 1. (a) XML tree and (b) TPQ.

R. Bača et al. / Information Systems 52 (2015) 21–3322



Download English Version:

https://daneshyari.com/en/article/396668

Download Persian Version:

https://daneshyari.com/article/396668

Daneshyari.com

https://daneshyari.com/en/article/396668
https://daneshyari.com/article/396668
https://daneshyari.com

