
A new verification technique for large processes based
on identification of relevant tasks

Richard Mrasek n, Jutta Mülle, Klemens Böhm
Karlsruhe Institute of Technology, KIT Institute for Program Structures and Data Organization, 76131 Karlsruhe, Germany

a r t i c l e i n f o

Article history:
Received 16 August 2013
Received in revised form
22 May 2014
Accepted 14 July 2014
Recommended by: G. Vossen
Available online 24 July 2014

Keywords:
Business process management
Business process modeling
Workflow modeling
Verification
Model checking
Petri net

a b s t r a c t

Verification recently has become a challenging topic for business process languages.
Verification techniques like model checking allow to ensure that a process complies with
domain-specific requirements, prior to the execution. To execute full-state verification
techniques like model checking, the state space of the process needs to be constructed.
This tends to increase exponentially with the size of the process schema, or it can even be
infinite. We address this issue by means of requirements-specific reduction techniques,
i.e., reducing the size of the state space without changing the result of the verification. We
present an approach that, for a given requirement the system must fulfill, identifies the
tasks relevant for the verification. Our approach then uses these relevant tasks for a
reduction that confines the process to regions of interest for the verification. To evaluate
our new technique, we use real-world industrial processes and requirements. Mainly
because these processes make heavy use of parallelization, full-state-search verification
algorithms are not able to verify them. With our reduction in turn, even complex
processes with many parallel branches can be verified in less than 10 s.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Verification recently has become a challenging topic for
business processes. The objective is to ensure their com-
pliance with domain-specific requirements, i.e., rules and
regulations. In industry, this is particularly important for
processes specified in high-level modeling languages [1,2].
High-level process languages are languages like BPEL,
BPMN, EPC or OTX that let the users design processes in
a comfortable way. Verification allows to check character-
istics of the behavior of a process schema prior to its
execution. Verification can prove the presence of charac-
teristics of a process, e.g., soundness [3], or their absence,
like deadlocks [4] or irreducible cancellation regions [5].

More general approaches to specify complex requirements
are worthwhile and do exist, notably model checking [6].
Users can find compliance violations in the process
schema before they cause high financial costs. Tassey [7]
reports that errors in software systems in general cause a
financial damage of 58.5 billion US-Dollars per year only
in the US, and companies could reduce the costs by 22.2
billion US-Dollars by using verification techniques. Verifi-
cation techniques are quite mature but in some complex
cases, as for example in the application domain we have
studied, have performance issues.

For verification techniques like model checking to take
place, the verification algorithm needs to construct the
state space of the process. Most high-level process lan-
guages lack formal semantics that hinder the direct con-
struction of the state space. But it is possible to transform
these processes into a formal representation, e.g., Petri
Nets that does allow the construction. However, the state
space can increase exponentially with the size of the process

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

http://dx.doi.org/10.1016/j.is.2014.07.001
0306-4379/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: richard.mrasek@kit.edu (R. Mrasek),

jutta.muelle@kit.edu (J. Mülle), klemens.boehm@kit.edu (K. Böhm).

Information Systems 47 (2015) 82–97

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2014.07.001
http://dx.doi.org/10.1016/j.is.2014.07.001
http://dx.doi.org/10.1016/j.is.2014.07.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.07.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.07.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.07.001&domain=pdf
mailto:richard.mrasek@kit.edu
mailto:jutta.muelle@kit.edu
mailto:klemens.boehm@kit.edu
http://dx.doi.org/10.1016/j.is.2014.07.001


schema, or it can even be infinite. This is well-known as
state-space explosion [8]. It leads to unacceptable runtimes
or renders the verification not executable. This is often
caused by parallel branches in the schema. To overcome this
problem, reduction techniques can be used, either (a) during
construction of the state space or (b) on the level of the
process schema already. Approaches like stubborn set reduc-
tions [9] fall into the first category. However, many of the
industrial processes to be analyzed in our evaluation are too
large to be verified only with stubborn set reductions. Even
with stubborn set reduction, there are more than 1 million
states in 78% of the processes we have evaluated; thus,
verification has not been possible in reasonable time.
Regarding (b), only few proposals exist, although preproces-
sing of the process schema is promising to achieve a
significant reduction of the state space. An example is
given in [10]. They specify the requirements in BPMN-Q.
BPMN-Q is a visual language to query business process
models. The approach of Reference [10] however is not
sufficient to express all requirements from our real-world
application scenario, see Section 6.3 for details. Furthermore,
they apply reduction rules on the process schema in an
iterative way. After each reduction step, another reduction
rule may become again applicable. Thus, a rescan of the
whole process may be necessary after each step, rendering
this kind of approach expensive. In the industrial setting
envisioned here, it is necessary to verify hundreds of
requirements per process, in short time. In our approach,
the requirements are dynamically generated at verification
time from a database with context information on the testing
processes, see Section 4. Many requirements are sequential
and parallel ordering constraints that certain tasks need to
fulfill. The processes are from a German car manufacturer.
They contain between 200 and 1000 elements, arranged in
up to 14 parallel lanes. Conventional techniques without
reduction cannot verify these requirements for these pro-
cesses. Compared to the processes dealt with by others [11],
ours are much larger and more complex, leading to an
exploding state space, see Section 6.1 for a comparison.

In this paper we present a new approach that verifies a
process efficiently by exploiting the structure of the high-
level process schema, see Section 4. The new algorithm
traverses the process structure tree and identifies the
regions of the process that are relevant for verification of
a given complex requirement, e.g., defined in a temporal
logic like CTL. Identifying the relevant regions of a process
is far from trivial, see for a discussion Section 4.1. Even an
elementary task cannot be removed in all cases, as we will
explain, see Section 4.4. Our approach features a criterion
for process-graph reduction, which we refer to as rele-
vance function. The algorithm proposed creates a formal
reduced representation of the process for each require-
ment, see Section 4.5. In particular, the reduction of
parallel regions helps to decrease the size of the state
space and hence the runtime of the verification, see
Section 4.6. The approach is evaluated with industrial
processes for testing newly produced vehicles in the
factories of a German car manufacturer, see Section 2.
One result is that even complex processes with many
parallel branches can be verified in less than 10 s on a
commodity PC, see Section 5.2. To demonstrate that the

approach is not limited to one specific scenario we have
applied our algorithm to a second use case. There, we have
analyzed whether a process contains data-flow anti-pat-
terns. The evaluation shows that our algorithm has been
able to reduce the state space for this use case significantly
as well. Thus, it also allows to analyze data-flow correct-
ness for large processes, see Section 2.2.

The structure of the paper is as follows. Section 2
describes the use cases and the requirement collection
phase. In Section 3 we introduce the notation, namely
RPST (Refined Process Structure Tree), Petri Nets, and CTL
(Computation Tree Logic). Section 4 describes our verifica-
tion approach, in particular the notion of relevance for
tasks, reducing the process tree and verifying the opti-
mized process model. We describe the implementation
and evaluate our approach in Section 5. In Section 6 we
discuss related work. Section 7 concludes.

2. Scenarios and collection of requirements

The main use case of this paper is the verification of
testing processes in the automobile industry. In Section 2.1.1
we briefly introduce this scenario. Section 2.1.2 contains
the requirements and how they have been collected. In
Section 2.2 we describe the second use case Data-Flow Errors.

2.1. Use case 1: testing processes

2.1.1. Scenario
In cooperation with a German automobile manufac-

turer, we use real processes that specify the sequential and
parallel ordering of commissioning and testing tasks of an
automobile, in short testing tasks, right after its assembly.
These processes are the ones that the manufacturer does
carry out in its factories worldwide. The processes are
described in OTX notation (Open Test sequence eXchange)
[12], a standard to specify testing workflows. The indus-
trial partner has provided us with 40 processes. They
contain between 6 and 813 elementary tasks. Because of
the massive use of parallelization, the state space often
(with 78% of the processes in our case) exceeds the size
which is practically computable, see Section 5 for more
details. The processes are executed at different testing
stations in a factory. For each station, each vehicle series
and each factory, process designers need to specify a
process by hand. A new vehicle variation again requires a
modification of the process. The processes for the same
station are quite similar in size and complexity.

2.1.2. Collection of requirements
To collect the requirements on testing processes, we

have conducted a series of about 10 interviews with the
process modelers of our industrial partner during three
months. The interviews have comprised a wide range
of experiences from more common points up to detailed
issues. Such detailed issues may result from concrete test
processes in vehicle development, to give an example. The
goal of the interviews has been to identify typical require-
ments that testing processes must fulfill. Example 1
illustrates the outcome of such an interview.

R. Mrasek et al. / Information Systems 47 (2015) 82–97 83



Download English Version:

https://daneshyari.com/en/article/396691

Download Persian Version:

https://daneshyari.com/article/396691

Daneshyari.com

https://daneshyari.com/en/article/396691
https://daneshyari.com/article/396691
https://daneshyari.com

