
The generic model query language GMQL – Conceptual
specification, implementation, and runtime evaluation

Patrick Delfmann n, Matthias Steinhorst, Hanns-Alexander Dietrich, Jörg Becker
University of Münster – ERCIS, Institut für Wirtschaftsinformatik, Leonardo-Campus 3, 48149 Münster, Germany

a r t i c l e i n f o

Article history:
Received 20 December 2012
Received in revised form
16 April 2014
Accepted 16 June 2014
Recommended by M. Weske
Available online 26 June 2014

Keywords:
Business Process Management
Conceptual model repository
Conceptual model analysis
Generic model query language
Model querying

a b s t r a c t

The generic model query language GMQL is designed to query collections of conceptual
models created in arbitrary graph-based modelling languages. Querying conceptual
models means searching for particular model subgraphs that comply with a predefined
pattern query. Such a query specifies the structural and semantic properties of the model
fragment to be returned. In this paper, we derive requirements for a generic model query
language from the literature and formally specify the language’s syntax and semantics. We
conduct an analysis of GMQL's theoretical and practical runtime performance concluding
that it returns query results within satisfactory time. Given its generic nature, GMQL
contributes to a broad range of different model analysis scenarios ranging from business
process compliance management to model translation and business process weakness
detection. As GMQL returns results with acceptable runtime performance, it can be used
to query large collections of hundreds or thousands of conceptual models containing not
only process models, but also data models or organizational charts. In this paper, we
furthermore evaluate GMQL against the backdrop of existing query approaches thereby
carving out its advantages and limitations as well as pointing toward future research.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

With the advancement of Business Process Management (BPM) technologies, many companies have started to develop
and maintain large collections of conceptual models [1]. These collections include process models, data models as well as
organizational charts and many other model types [2]. A task that frequently occurs when analysing large model collections
is querying models to detect particular patterns in them. A pattern represents a subgraph of the overall model graph that
complies with the structural and semantic properties defined in the predefined pattern query. Such a query is executed on a
set of models to determine all pattern occurrences contained in that collection. Querying models serves a variety of different
analysis purposes (see examples in Section 2 for more details). For instance, in order to improve a business process, the
corresponding conceptual process model needs to be checked for weakness patterns [3]. In this context, a weakness pattern
represents a subgraph of the overall model graph that points to a potentially inefficient part of a business process (e.g.,
subsequent switching of manual and automatic processing). Pattern matching also plays a role in design time process
compliance checking. Many compliance rules place particular restrictions on the control flow of process models [4]. These
restrictions can be represented as patterns that need to be identified in a model collection. A third application scenario of

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

http://dx.doi.org/10.1016/j.is.2014.06.003
0306-4379/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ49 251 83 38083.
E-mail address: patrick.delfmann@ercis.uni-muenster.de (P. Delfmann).

Information Systems 47 (2015) 129–177

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2014.06.003
http://dx.doi.org/10.1016/j.is.2014.06.003
http://dx.doi.org/10.1016/j.is.2014.06.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.06.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.06.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.06.003&domain=pdf
mailto:patrick.delfmann@ercis.uni-muenster.de
http://dx.doi.org/10.1016/j.is.2014.06.003


pattern matching is model translation, in which a model of a given language is transferred into a model of a different
notation [5]. This can be achieved by finding patterns that are translated to predefined model fragments of the target
language.

All of these model analysis scenarios have in common that a collection of conceptual models needs to be queried in order
to find occurrences of a particular pattern within the model graphs. These model collections typically contain models
developed in many different modelling languages [2]. Process models can, for instance, be developed using Business Process
Model and Notation (BPMN) [6], Event-driven Process Chains (EPC) [7], or Petri Nets [8]. Data models can be developed
using Entity-Relationship (ER) models [9] or Unified Modelling Language (UML) class diagrams [10], to name only a few. To
support these model analysis scenarios, the literature has put forth the concept of model query languages [11]. A model
query language essentially consists of two main components. First, it provides a set of constructs to define a pattern query. A
pattern query is a representation of a model subgraph that needs to be found within the overall model graph for various
analysis purposes (see above). Second, a query language contains a pattern matching algorithm that takes the query
specification and a model (or a set of models) as input and returns all occurrences of the subgraph represented by the query
within the input model(s). Model query languages therefore enable pattern matching in conceptual models.

A number of such query languages have been proposed in recent years (see [11] for a comprehensive survey as well as
Section 7.3 in this paper). However, these query languages are designed to support pattern matching in a particular type of
model (e.g., process models [12,13]) or in models developed in a particular modelling language [14]. We follow the
argument of van der Aalst [15] claiming that model analysis approaches put forth in the scientific community need to
support analysing models of any graph-based modelling language if they are ever to disseminate into corporate reality. This
is due to the fact that different organizations typically use different modelling languages [16]. After all, specialized
approaches that work only on particular types of models developed in a particular language are not useful for an
organization that uses different modelling languages. For example, an organization that uses EPCs for process modelling
cannot use a query language like BPMN-Q that is solely designed for querying BPMN models. To this end, the generic model
query language GMQL has recently been proposed [17,18]. It is based on the idea that any model is essentially an attributed
graph that can be represented by the set of its objects (i.e., graph vertices) and the set of its relationships (i.e., graph edges).
Each object and each relationship has a set of attributes that further specifies the semantics of the element (e.g., type, label,
description, etc.). As constructs to define a pattern query GMQL provides set-altering functions and operators that take these
two basic sets as input and perform various operations on them. These functions and operators can be nested to construct
tree-like pattern queries (see details below). The GMQL pattern matching algorithm walks through this query tree calculating
its leaf node first and returning the results to the next higher level. In doing so, the result of one function or operator call
serves as input for the next. At the end, GMQL returns every pattern occurrence, meaning the model fragments that comply
with the query definition and are thus of interest for the analyst.

GMQL treats any conceptual model as an attributed graph. It is thus closely related to graph theory. In graph theory, the
problem of pattern matching is known as the problem of subgraph isomorphism (SGI) [19]. SGI, however, is concerned with
identifying one-to-one mappings between a pattern graph and a subsection of a search graph. This means, that all nodes
and all edges of a pattern graph are mapped to a subset of nodes and edges in the model graph. As we will see in the
examples section below, this is too restrictive for many model analysis scenarios, because SGI requires the exact pattern
structure to be known a priori. Pattern matching in model analysis scenarios rather requires identifying subsections of a
model that contain element paths of previously unknown length. In graph theory, this can be achieved with algorithms for
subgraph homeomorphism (SGH) [20]. However, corresponding algorithms by default map all edges in the pattern graph on
all possible paths in the model graph leading to a huge number of (mostly not suitable) pattern matches. Consequently, SGI
on the one hand is too restrictive and SGH on the other hand is too unrestrictive for the purpose of pattern matching in
conceptual models. GMQL therefore is a combination of both. It allows for finding model subgraphs that are partly
isomorphic and partly homeomorphic to a predefined pattern query. In doing so, particular edges in the pattern query can
be mapped to edges in the model, whereas other pattern edges can be mapped to paths in the model.

The paper at hand extends two previous papers presenting the initial concept of GMQL [17] and a preliminary
performance evaluation for EPC models [18]. This paper extends these findings as follows:

� We analyse common patterns proposed in the literature in terms of their graph structure. In doing so, we derive a refined
set of functional requirements for GMQL.

� We present a formal specification of the GMQL syntax using Extended Backus-Naur Form (EBNF) statements.
� We present a formal specification of the new GMQL semantics using set operations.
� We present a detailed description of GMQL's matching algorithm.
� We present exemplary pattern queries for each of the model analysis scenarios discussed in the literature. Thereby, we

demonstrate the applicability of GMQL.
� We analyse the theoretical worst-case complexity of the GMQL matching algorithm.
� We extend the performance analysis presented in [18] to include runtime measurements for ER models.
� As the number and size of conceptual models contained in a collection is steadily increasing [21], runtime performance

of a pattern matching approach is of paramount importance. The measurements presented in [18] suggest that runtimes
increase significantly whenever the query contains path functions. We therefore changed the implementation of these
functions to include an efficient depth first search that is based on the idea of tagging already visited elements instead of

P. Delfmann et al. / Information Systems 47 (2015) 129–177130



Download English Version:

https://daneshyari.com/en/article/396694

Download Persian Version:

https://daneshyari.com/article/396694

Daneshyari.com

https://daneshyari.com/en/article/396694
https://daneshyari.com/article/396694
https://daneshyari.com

