Information Systems 47 (2015) 178-193

Contents lists available at ScienceDirect =
Information
. __UELCS
Information Systems S
- a - journal homepage: www.elsevier.com/locate/infosys ;_;
Top-k-size keyword search on tree structured data @CmssMark

Aggeliki Dimitriou ?, Dimitri Theodoratos ™*, Timos Sellis ¢

@ School of Electrical and Computer Engineering National Technical University of Athens, Greece
b Department of Computer Science New Jersey Institute of Technology, United States
€ School of Computer Science and Information Technology, RMIT University, Australia

ARTICLE INFO

ABSTRACT

Article history:

Received 22 July 2013
Received in revised form

14 March 2014

Accepted 14 July 2014
Recommended by: Xifeng Yan
Available online 25 July 2014

Keywords:

Keyword search
Tree-structured data
LCA

Search algorithm
Ranking

Keyword search is the most popular technique for querying large tree-structured datasets,
often of unknown structure, in the web. Recent keyword search approaches return lowest
common ancestors (LCAs) of the keyword matches ranked with respect to their relevance
to the keyword query. A major challenge of a ranking approach is the efficiency of its
algorithms as the number of keywords and the size and complexity of the data increase.
To face this challenge most of the known approaches restrict their ranking to a subset of
the LCAs (e.g., SLCAs, ELCAs), missing relevant results.

In this work, we design novel top-k-size stack-based algorithms on tree-structured data.
Our algorithms implement ranking semantics for keyword queries which is based on the
concept of LCA size. Similar to metric selection in information retrieval, LCA size reflects the
proximity of keyword matches in the data tree. This semantics does not rank a predefined
subset of LCAs and through a layered presentation of results, it demonstrates improved
effectiveness compared to previous relevant approaches. To address performance challenges
our algorithms exploit a lattice of the partitions of the keyword set, which empowers a linear
time performance. This result is obtained without the support of auxiliary precomputed data
structures. An extensive experimental study on various and large datasets confirms the
theoretical analysis. The results show that, in contrast to other approaches, our algorithms
scale smoothly when the size of the dataset and the number of keywords increase.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

documents but appropriately selected fragments of XML
trees that contain matches to all the keywords [28,14]. A

Tree-based structures (e.g., XML, JSON, YAML) are a
widely adopted format for exporting and exchanging data
on the web. Keyword search is the most popular technique
for retrieving information from the web because it frees
the users from (a) mastering a complex query language
(e.g., XQuery), and (b) having full knowledge of the schemas
of the data sources they want to query. In contrast to
keyword search on flat text documents, keyword search on
XML (or other tree-structured) data returns not whole

* Corresponding author.
E-mail addresses: angela@dblab.ntua.gr (A. Dimitriou),
dth@cs.njit.edu (D. Theodoratos), timos.sellis@rmit.edu.au (T. Sellis).

http://dx.doi.org/10.1016/j.i5.2014.07.002
0306-4379/© 2014 Elsevier Ltd. All rights reserved.

large number of publications elaborate on the form
[14,24,4,5,8,26,23] and the meaningful instances of these
result fragments [14,10,22,31,15,29,18,32,25,26,30,17] in the
input XML tree. Usually, the query results are the minimum
connecting trees that contain one instance of every keyword
in the query. These minimum connecting trees are repre-
sented by their root which is the lowest common ancestor
(LCA) of the included keyword instances. Approaches that
select and return as answer to keyword queries a subset of
the LCAs in the XML tree are called filtering because they
filter out LCAs that are considered irrelevant [10,22,31,18,32].
Although, filtering approaches are intuitively reasonable,
they are sufficiently ad hoc and they are frequently violated
in practice resulting in low precision and/or recall [30].


www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2014.07.002
http://dx.doi.org/10.1016/j.is.2014.07.002
http://dx.doi.org/10.1016/j.is.2014.07.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.07.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.07.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.07.002&domain=pdf
mailto:angela@dblab.ntua.gr
mailto:dth@cs.njit.edu
mailto:timos.sellis@rmit.edu.au
http://dx.doi.org/10.1016/j.is.2014.07.002

A. Dimitriou et al. / Information Systems 47 (2015) 178-193 179

A better approach would rank the LCAs placing on top
those that are considered more relevant to the query.
Ranking the LCAs greatly improves the usability of the
system. Most ranking approaches are based on strategies
employed for flat text documents (e.g., tf=xidf or PageRank)
adapted to the hierarchical nature of the XML trees
[14,10,30,2]. Recognizing the fact that users are usually
interested in a small number of query results, some papers
recently develop top-k algorithms for keyword search over
XML data [19,8,21]. The goal of the top-k algorithms is to
rank and select the top-k results without explicitly produ-
cing and ranking all of them.

Current approaches for keyword search on tree-
structured data face a number of problems:

Problem 1: Performance scalability. The number of LCAs
for a given keyword query can be very large. Even though
multiple query matches can share the same LCA, this
number can, in the worst case, be exponential on the size
of the query (number of keywords). The complexity of
previous algorithms that process and possibly rank the
totality of the LCAs depends on the product of the size of
the keyword inverted lists [15,30,23]. Consequently, such
algorithms do not scale satisfactorily when the size of the
dataset and the number of keywords increase.

Problem 2: Dependence from additional auxiliary data
structures. In order to address the performance scalability
problem a number of approaches rely on the construction
of auxiliary data structures, on top of the keyword inverted
lists (e.g., B+-tree [32], ranked Dewey inverted list and
B-++-tree [14], data summary index [23], hash count index
[33]). Moreover, many approaches rely on additional
auxiliary data structures and statistical information even
for efficiently implementing query semantics (e.g., inter-
connection index [10,9], normalized total correlation [30]).
Building these auxiliary structures requires producing and
storing the inverted lists and the auxiliary data structures
of the dataset. This process is not only time consuming but
also renders these approaches impractical to a number of
applications including streaming applications.

Problem 3: Quality of the answer. In order to avoid produ-
cing a large number of LCAs the different ranking and top-k
approaches proposed [14,10,8,21] produce and rank not all the
LCAs but only a small subset defined by filtering semantics (e.
g., SLCA [31,15,29,25], ELCA [14,32,33]). This strategy, even
though computationally appealing, is semantically insufficient
since, despite the potential quality of the ranking criteria, it
penalizes the query answer with the deficiencies of the
corresponding filtering semantics. For instance, if relevant
results are missed by the filtering semantics they cannot be
recovered and presented to the user, no matter how good or
efficient the ranking technique is.

Problem 4: User interface of top-k approaches. In order to
support the users in coping with a possibly large number
of results but also for performance reasons, recent
approaches return only top-k results to keyword queries
[8,21]. However, the selection of k by the user at query
time is a tricky issue: a selection of a small k may miss
relevant results while a selection of a large k may over-
whelm the user with a large number of irrelevant results
and unnecessarily increase the response time. Using a
good ranking function could address the problem of the

multitude of returned results but it does not resolve the
performance issue. Successfully selecting the appropriate k
requires knowledge of the number of results, which
depends on the size and structure of the dataset, the
number of query keywords and the keyword frequencies
in the dataset. Requiring the user to have detailed statis-
tical information about the dataset and be able to apply
complex techniques for estimating the number of relevant
results defies the reason for using such a simple query
language as keyword queries.

Our approach. In this paper, we present novel, efficient top-
k algorithms which compute results of top-k LCA sizes. This
approach contrasts to traditional top-k approaches which
focus on computing top-k results. The concept of LCA size
introduced in this paper reflects the proximity of keywords in
tree-structured data and, similar to the concept of keyword
proximity in the IR domain, is used here as a relevance
criterion for the results of a keyword query.

The efficiency of our algorithms is achieved by exploiting
a lattice of keyword partitions of the query keywords. The
paths of the lattice are used in gradually combining keyword
instances into partial LCAs, allowing the exclusion of combi-
nations of other instances of the same keywords with larger
size before they contribute to the formation of full LCAs. This
technique avoids the exhaustive computation of all keyword
instance combinations in finding the LCAs of top-k sizes. As a
consequence, our algorithms scale smoothly when the size of
the dataset increases and tackle successfully the performance
scalability issue (Problem 1). Interestingly, our algorithms
achieve efficiency without recurring to the construction of
auxiliary data structures, this way avoiding the preprocessing
phase required by other approaches (Problem 2).

Our algorithms implement ranking semantics and consider
for ranking the full set of LCAs. Therefore, they do not suffer
from deficiencies (low precision or recall) of previous ranking
and top-k approaches which are restricted to a predefined,
structurally determined subset of LCAs (Problem 3). The
returned results are grouped in LCA size layers which are
ranked on LCA size. The layers can have a varying number of
results. This layered computation relieves the user from
providing with the query an appropriate k for top-k result
computation (Problem 4). The top-1-size layer contains results
of highest proximity and shows high precision while recur-
rence to a subsequent layer is possibly needed only in case
increased recall is desired.

Contribution. The main contributions of our paper are
the following:

® We design novel, efficient multi-stack based algo-
rithms, that exploit a lattice of stacks representing the
different partitions of query keywords. Our algorithms
compute: (a) keyword search results below a given LCA
size threshold, (b) results of top-k LCA sizes and (c) top-
k results.
In contrast to previous approaches, ours does not involve
auxiliary index structures and therefore it can be exploited
on datasets which have not been preprocessed.

® We analyze our algorithms and show that for a fixed
number of query keywords their performance is linear
on the size of the input keyword inverted lists. This
behavior contrasts with that of previous algorithms,



Download English Version:

https://daneshyari.com/en/article/396695

Download Persian Version:

https://daneshyari.com/article/396695

Daneshyari.com


https://daneshyari.com/en/article/396695
https://daneshyari.com/article/396695
https://daneshyari.com

