Information Systems 47 (2015) 197-219

Contents lists available at ScienceDirect x
Information
ems
Information Systems S
SEVIER journal homepage: www.elsevier.com/locate/infosys sarmcs

The relationship between workflow graphs and free-choice
workflow nets

@ CrossMark

Cédric Favre?, Dirk Fahland®, Hagen Vélzer **

2 IBM Research, Zurich, Switzerland
b Eindhoven University of Technology, The Netherlands

ARTICLE INFO ABSTRACT

Available online 27 December 2013 Workflow graphs represent the main control-flow constructs of industrial process model-

ing languages such as BPMN, EPC and UML activity diagrams, whereas free-choice

Keywords: R .
Workflow graphs workflow nets are a well understood class of Petri nets that possesses many efficient
Petri nets analysis techniques. In this paper, we provide new results on the translation between
Free choice workflow graphs and free-choice workflow nets.

Inclusive Or-join We distinguish workflow graphs with and without inclusive Or-logic. For workflow
graphs without inclusive logic, we show that workflow graphs and free-choice workflow
nets are essentially the same thing. More precisely, each workflow graph and each free-
choice workflow net can be brought into an equivalent normal form such that the normal
forms are, in some sense, isomorphic. This result gives rise to a translation from arbitrary
free-choice workflow nets to workflow graphs.

For workflow graphs with inclusive logic, we provide various techniques to replace
inclusive Or-joins by subgraphs without inclusive logic, thus giving rise to translations
from workflow graphs to free-choice nets. Additionally, we characterize the applicability
of these replacements. Finally, we also display a simple workflow graph with an inclusive
Or-join, which, in some sense, cannot be replaced. This shows a limitation of translating
inclusive logic into free-choice nets and illustrates also a difficulty of translating inclusive
logic into general Petri nets.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction performance analysis, and process mining are based on

Petri nets.

Different BPM tools, execution engines, and scientific
analysis techniques are based on different modeling lan-
guages for business processes. This generates a general
interest in translating models from one language into
another. In particular, business processes are in practice
often modeled in industrial languages such as BPMN,
EPCs, and UML activity diagrams whereas many analysis
techniques, such as control-flow analysis, cost estimation,

* Corresponding author.
E-mail addresses: ced@zurich.ibm.com (C. Favre),
d.fahland@tue.nl (D. Fahland), hvo@zurich.ibm.com (H. Vélzer).

0306-4379/$ - see front matter © 2014 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.i5.2013.12.004

A particular appealing and well understood class of
Petri nets are free-choice workflow nets. While they are
expressive enough to model the most important control-
flow patterns, they rule out some behavioral patterns
that are often undesired, such as race conditions, where
some choices in a process may become dependent on the
ordering of concurrent events. These restrictions make
free-choice Petri nets easier to understand and analyze (cf.
discussion in [1]). In fact, for free-choice Petri nets, various
analysis problems can be solved in polynomial time, which
are NP-hard for general Petri nets [2-4].

The gap between industrial languages and Petri nets so
far has been bridged in one direction, viz. by translating

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2013.12.004
http://dx.doi.org/10.1016/j.is.2013.12.004
http://dx.doi.org/10.1016/j.is.2013.12.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2013.12.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2013.12.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2013.12.004&domain=pdf
mailto:ced@zurich.ibm.com
mailto:d.fahland@tue.nl
mailto:hvo@zurich.ibm.com
http://dx.doi.org/10.1016/j.is.2013.12.004

198 C. Favre et al. / Information Systems 47 (2015) 197-219

a model in an industrial language to a Petri net e.g., [2,5].
However, such a translation becomes less effective if the
input model contains not only exclusive but also inclusive
alternative branching. Existing translations to Petri nets
make the inclusive logic explicit, which causes an expo-
nential blow-up in the Petri net, which in turn affects
running times of analysis techniques.

Furthermore, results of algorithms working on Petri
nets currently cannot be translated easily to an industrial
language for the lack of a well-understood translation
mechanism from Petri nets to industrial languages.

By extending existing translation mechanisms to also
translate inclusive branching without exponential blow-
up, and to translate from Petri nets to industrial languages,
a number of interesting use cases could be enabled. Results
of various Petri-net based techniques such as process
discovery or process model repair could be easily trans-
lated to industrial languages. Process analysis techniques
such as verification, simulation, or performance analysis
could be applicable to a larger class of industrial languages.
Techniques for relating different process models to each
other e.g., process model comparison, alignment or query-
ing from a repository, could become easier to apply to
process models of different meta-models.

We formally study the problem as the relation between
workflow graphs and Petri nets. The main control flow of a
BPMN, EPC or UML activity diagram can be captured as a
workflow graph. A workflow graph may contain exclusive
or inclusive alternative branching as well as parallel
branching of control flow. In this paper, we present new
results on the translation between workflow graphs and
Petri nets, in particular free-choice Petri nets.

The requirements of a translation between a workflow
graph and a Petri net can vary for different use cases. To
obtain general, yet useful results, we take the following
requirements into account:

® A model and its translation must have equivalent
behavior. Many notions of equivalence exist [G]. The
adequacy of an equivalence for the translation depends
on the use case. We will present the equivalences we
use later in the paper. Note that this requirement may
by itself not be challenging. For example, one can easily
‘unfold’ an acyclic workflow graph into its finite full
behavior (i.e., computation tree) and then encode this
‘unfolding’ as a Petri net. Such a construction would
preserve, depending on its precise execution, many
popular behavioral equivalences, such as trace equiva-
lence and bisimulation. However, the obtained transla-
tion is in general exponentially larger than the original
workflow graph. Therefore,

® the size of the translated model must be manageable.
An exponential blowup is usually not acceptable. We
are not aware of any general translation from all work-
flow graphs with inclusive logic into Petri nets that
preserves the behavior and does not incur an exponen-
tial blowup. Furthermore,

® the translation must preserve the structure of the
original model as much as possible. This is important
if we want to map analysis results between the original
model and its translation. For example, in order to

return to the user of an analysis technique the results in
terms of the original process model or, when monitor-
ing or administrating a process, to understand a trace
or a state of the running process in terms of the original
process model.

We present the following results. We first consider the
simpler case of workflow graphs without inclusive logic.
Although it is known that workflow graph without inclu-
sive logic are tightly related to free-choice nets, only a
translation from workflow graphs to free-choice nets, but
not a reverse translation from free-choice nets to workflow
graphs was published so far. We present such a reverse
translation. Moreover, we show that workflow graphs and
free-choice workflow nets are essentially the same thing.
More precisely, each workflow graph and each free-
choice workflow net can be brought into an equivalent
normal form such that the normal forms are, in some
sense, isomorphic. (The workflow graph is isomorphic to
the graph of conflict clusters of its corresponding work-
flow net.) This means that, when being in normal form, the
workflow graph representation and the free-choice net
representation can be used completely interchangeably in
every use case.

In the second part, we study workflow graphs with
inclusive logic. The inclusive branching forks or joins a
variable set of threads, thereby supporting various workflow
patterns [7]. The inclusive Or-join (IOR-join), which has a
non-local semantics, is difficult to translate to Petri nets
because the semantics of a Petri net transition is local. That
is, the enablement and effect of a transition in a Petri net
relate only to its adjacent places—a small part of the state of
the Petri net—whereas the enablement of an IOR-join may
depend on the entire state of the process model.

We show that, in many cases, the IOR-join can be
replaced with free-choice constructs, i.e., with a combination
of exclusive and parallel joins. However, we will also display
a simple workflow graph in which, in some formal sense, an
IOR-join cannot be replaced. This will reveal an intrinsic
limitation on the replaceability of IOR-joins and hence the
translatability of the workflow graph of general process
models into Petri nets. This also suggests that the expres-
siveness of IOR-joins extends beyond free-choice nets.

The remainder of this paper is structured as follows.
In Section 2, we introduce the notions of a workflow net
and workflow graph. In Section 3, we present the transla-
tion between workflow nets and workflow graphs without
inclusive logic. In Section 4, we present our results on the
translation of workflow graphs with inclusive logic.

2. Foundations

In this section, we define the necessary fundamental
notions, which include workflow nets, workflow graphs,
and their semantics.
2.1. Workflow nets

A Petri net N=(P,T,F) consists of a finite set P of

places, a finite set T of transitions, PN T=g, and
arcs F= (P x T) U (T x P). For any node xe P U T, we write

Download English Version:

https://daneshyari.com/en/article/396697

Download Persian Version:

https://daneshyari.com/article/396697

Daneshyari.com

https://daneshyari.com/en/article/396697
https://daneshyari.com/article/396697
https://daneshyari.com/

