
An alignment-based framework to check the conformance of
declarative process models and to preprocess event-log data

Massimiliano de Leoni a,n, Fabrizio M. Maggi b, Wil M.P. van der Aalst a

a Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
b Institute of Computer Science, University of Tartu, Estonia

a r t i c l e i n f o

Available online 17 January 2014

Keywords:
Process mining
Declare
LTL
Conformance checking
Event-log preprocessing

a b s t r a c t

Process mining can be seen as the “missing link” between data mining and business
process management. The lion0s share of process mining research has been devoted to the
discovery of procedural process models from event logs. However, often there are
predefined constraints that (partially) describe the normative or expected process, e.g.,
“activity A should be followed by B” or “activities A and B should never be both executed”.
A collection of such constraints is called a declarative process model. Although it is possible
to discover such models based on event data, this paper focuses on aligning event logs and
predefined declarative process models. Discrepancies between log and model are
mediated such that observed log traces are related to paths in the model. The resulting
alignments provide sophisticated diagnostics that pinpoint where deviations occur and how
severe they are. Moreover, selected parts of the declarative process model can be used to
clean and repair the event log before applying other process mining techniques. Our
alignment-based approach for preprocessing and conformance checking using declarative
process models has been implemented in ProM and has been evaluated using both
synthetic logs and real-life logs from a Dutch hospital.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Traditional Workflow Management (WFM) and Business
Process Management (BPM) systems are based on the idea
that processes can be described by procedural languages
where the completion of one task may enable the execution
of other tasks, i.e., procedural models are used to “drive”
operational processes. While such a high degree of support
and guidance is certainly an advantage when processes are
repeatedly executed in the same way, in dynamic and less
structured settings (e.g., healthcare) these systems are often
considered to be too restrictive. Users need to react to
exceptional situations and execute the process in the most

appropriate manner. It is difficult, if not impossible, to
encode this human flexibility and decision making in proce-
dural models.

Declarative process models acknowledge this and aim at
providing freedom without unnecessarily restricting users
in their actions. Procedural process models take an
“inside-to-outside” approach, i.e., all execution alterna-
tives need to be explicitly specified and new alternatives
need to be incorporated in the model. Declarative models
use an “outside-to-inside” approach: anything is possible
unless explicitly forbidden. Hence, a declarative process
model can be viewed as a set of constraints rather than as
a procedure.

WFM and BPM systems tend to force people to work in
a particular way. When using a declarative WFM and BPM
system, more freedom can be offered. However, in most
dynamic and less structured settings no system is enfor-
cing users to work in a particular way. This may result in

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

0306-4379/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.is.2013.12.005

n Corresponding author.
E-mail addresses: m.d.leoni@tue.nl (M. de Leoni),

f.m.maggi@ut.ee (F.M. Maggi),
w.m.p.v.d.aalst@tue.nl (W.M.P. van der Aalst).

Information Systems 47 (2015) 258–277

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2013.12.005
http://dx.doi.org/10.1016/j.is.2013.12.005
http://dx.doi.org/10.1016/j.is.2013.12.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2013.12.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2013.12.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2013.12.005&domain=pdf
mailto:m.d.leoni@tue.nl
mailto:f.m.maggi@ut.ee
mailto:w.m.p.v.d.aalst@tue.nl
http://dx.doi.org/10.1016/j.is.2013.12.005


undesirable deviations and inefficiencies. Sometimes there
may be good reasons to do things differently. Consider the
“breaking the glass” functionality in many systems as a
means to deal with exceptions, e.g., using the emergency
breaks in case of an accident, unauthorized access to
private patient data in case of an emergency and bypassing
an administrative check to help an important customer.

Even though process models are typically not enforced,
many events are recorded by today0s information systems.
As information systems are becoming more and more
intertwined with the operational processes they support,
“torrents of event data” become available. Therefore, it is
interesting to compare observed behavior with modeled
behavior.

This paper proposes the implementation of a framework
for the analysis of the execution of declarative processes. It is
based on the principle of creating an alignment of an event
log and a process model. Each trace in the event log is related
to a possible path in the process model. Ideally, every event
in the log trace corresponds to the execution of an activity in
the model. However, it may be the case that the log trace
does not fit completely. Therefore, there may be “moves” in
the event log that are not followed by “moves” in the model
or vice versa.

The alignment concept has successfully been used in the
context of procedural models (e.g., [1–3]); here, we adapt it
for declarative models. Similarly to what has been proposed
for procedural models, in our approach, events in the log are
mapped to executions of activities in the process model. A
cost/weight is assigned to every potential deviation. We use
the An algorithm [4] to find, for each trace in the event log,
an optimal alignment, i.e., an alignment that minimizes the
cost of the deviations. The application of the An algorithm is
more challenging for declarative models than for procedural
models. This is due to the fact that, since in a declarative
model everything is allowed unless constrained otherwise,
the set of admissible behaviors is generally far larger than
the set of behaviors allowed by procedural models. This
implies that the search space to find an optimal alignment of
a log and a declarative model is much larger. Therefore, for
this type of models, it is essential to avoid exploring search-
space portions that certainly lead to non-optimal solutions.

The log-model alignment can be the main input of a
wide range of techniques for the analysis of declarative
processes. On this concern, Section 3 shows the three main
use cases that are considered in this paper. The first use case
is concerned with cleaning the event logs by removing log
traces that should not be used for further analysis (e.g.,
incomplete traces). The second use case is about checking
the conformance of the event logs against a given declara-
tive model, which can be regarded and measured from
diverse dimensions, highlighting where deviations occur.
The third and last use case concerns repairing event logs to
make sure that the essential constraints are satisfied before
further analysis. These use cases are supported by function-
alities that are available in ProM, a generic open-source
framework for implementing process mining tools in a
standard environment [5].

In this paper, we use Declare as an example of declarative
language. Section 2 introduces the basic aspects of the
Declare language along with the working example that is

used throughout the paper, while Section 4 introduces some
background knowledge. Section 5 describes the notion of
log–model alignment and some diagnostics that can be
computed using alignments. Section 6 describes the appli-
cation of the An algorithm to find an optimal alignment.
Here, we also introduce an optimization of the algorithm to
prune large irrelevant portions of the search space that
certainly lead to non-optimal solutions. Section 7 discusses
the second use case in detail, i.e., how the alignments can be
used to check the conformance of an event log with respect
to a Declare model. Section 8 focuses on the first and third
use case, i.e., how event logs can be cleaned and repaired.
Section 9 reports an evaluation of the different techniques,
which is based on synthetic and real-life logs. Section 10
discusses related work, whereas Section 11 concludes the
paper and highlights potential future work.

2. Declare and basic notation

Declare is a declarative language with an intuitive gra-
phical representation to describe constraints and activities
[6–8]. Its formal semantics is based on Linear Temporal Logic
(LTL) for finite traces [9] where each constraint is defined
through an LTL formula.1 The Declare toolset includes a
graphical designer, a workflow engine, a worklist handler
and various analysis tools [10].2 A detailed description of
Declare is out of the scope of this paper. The most relevant
Declare features are introduced here through an illustrative
example. Interested readers are referred to [11] for a detailed
coverage of the Declare language.

Example 1. A travel agency has enacted a process to
handle health-related insurance claims. The process to
handle these claims is illustrated in Fig. 1. The model
includes eight activities (depicted as rectangles, e.g., Con-
tact Hospital) and six constraints (shown as connectors
between activities). Depending on the claimed amount, a
claim can be classified as high or low. For low claims, tasks
Low Insurance Check and Low Medical History need to be
executed. The co-existence constraint indicates that these
activities are always executed together (in any order). If a
claim is classified as low, no activities referring to high
claims can be executed and vice versa. The not co-existence
constraint indicates that Low Insurance Check and High
Insurance Check can never coexist in the same process
instance. Moreover, in case of high claims, the medical
history check (High Medical History) can only be executed
together with the insurance check (High Insurance Check),
even though they can be executed in any order. Never-
theless, it is possible to execute High Insurance Check with-
out executing High Medical History. All this is enforced by
the responded existence constraint. For every claim, it is
also possible to contact the doctor/hospital for verification.
However, in case of high claims, this cannot be done before
the insurance check. This is defined by the not succession
constraint: Contact Hospital cannot be followed in the
same process instance by High Insurance Check. A

1 For compactness, in the following we will use the LTL acronym to
denote LTL for finite traces.

2 Declare web site – http://www.win.tue.nl/declare/.

M. de Leoni et al. / Information Systems 47 (2015) 258–277 259

http://www.win.tue.nl/declare/


Download	English	Version:

https://daneshyari.com/en/article/396700

Download	Persian	Version:

https://daneshyari.com/article/396700

Daneshyari.com

https://daneshyari.com/en/article/396700
https://daneshyari.com/article/396700
https://daneshyari.com/

