
Automated runtime repair of business processes

N.R.T.P. van Beest a,n,1, E. Kaldeli b,1, P. Bulanov b, J.C. Wortmann a, A. Lazovik b

a Department of Operations, Faculty of Economics and Business, University of Groningen, Nettelbosje 2, 9747 AE Groningen,
The Netherlands
b Distributed Systems Group, Johann Bernoulli Institute, University of Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands

a r t i c l e i n f o

Article history:
Received 17 September 2012
Received in revised form
8 July 2013
Accepted 10 July 2013
Recommended by: L. Wong
Available online 18 July 2013

Keywords:
Process interference
Business process management
Run-time process repair
e-Government

a b s t r a c t

Concurrent business processes frequently suffer from mutual interference, especially in
highly distributed service environments, where resources are shared among different
stakeholders. Interference may be caused by supposedly stable case-related data, which
are modified externally during process execution and may result in undesirable business
outcomes. One way to address this problem is through the specification of dependency
scopes, that cover critical parts of the process, and intervention processes, which are
triggered at runtime to repair the inconsistencies. However, for complex processes, the
manual specification of the appropriate intervention processes at design time can be parti-
cularly time-consuming and error-prone, while it is difficult to ensure that all important
intervention cases are taken into account. To overcome this limitation, we propose
an approach for automating the generation of intervention processes at runtime, by using
domain-independent AI planning techniques. This way, intervention processes are
composed on the fly, taking into account the characteristics of the business process
in execution, the available compensation activities, and the properties that have to be
fulfilled to recover from the erroneous situation. A prototype has been implemented and
evaluated on a real case study of a business process from the Dutch e-Government.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Modern organizations are moving from traditional, proprietary and locally managed Business Process Management
Systems (BPMS) to BPMS where more and more tasks are outsourced to third party providers and resources are shared
among different stakeholders [31,18,10]. The application of principles inspired by Service Oriented Architectures (SOA)
enables the integration of interoperable, local or remote services within a business process (BP), aiming at adaptability
and reuse. In such an open and dynamic setting, BPs can no longer be considered in isolation, since data resources are not
necessarily proprietary to the organization, but are simultaneously shared with other external actors and processes.
e-Government is a typical area that is characterized by multiple concurrently executing knowledge-intensive processes,
which access and modify commonly shared resources such as citizen data, information reported by external contracted
parties, etc. In such a context, traditional verification techniques for workflows and data-flows, e.g. [53] are not sufficient for
ensuring the correctness of such BPs, since they assume that process and data interactions are predefined in advance.
However, not all interactions are known or prespecified, since data can be simultaneously accessed and modified by
different processes, with no obvious relation to the BP in progress. Disregarding the interdependencies with external actors

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

0306-4379/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.is.2013.07.003

n Corresponding author. Tel.: +31 503 638 562.
E-mail address: n.r.t.p.van.beest@rug.nl (N.R.T.P. van Beest).
1 These authors have contributed equally to this paper.

Information Systems 39 (2014) 45–79

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2013.07.003
http://dx.doi.org/10.1016/j.is.2013.07.003
http://dx.doi.org/10.1016/j.is.2013.07.003
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.is.2013.07.003&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.is.2013.07.003&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.is.2013.07.003&domain=pdf
mailto:n.r.t.p.van.beest@rug.nl
http://dx.doi.org/10.1016/j.is.2013.07.003


and other processes may lead to inconsistent situations, which potentially result in undesirable business outcomes. The
situation where undesirable business outcomes are caused by data modifications of some other concurrently executing
process is known as process interference [63,55].

Process interference occurs far more often than most people realize. Processes are developed under the assumption
that case-related data are stable, and this assumption is in general not true. As soon as case-related data are changed,
processes may yield wrong results. In many cases, however, these wrong results do not lead to immediate software errors.
Consequently, there exists the incorrect impression that the process runs well. Nevertheless, in the real world these inter-
ference situations lead to erroneous situations. These may refer to proceeding to activities based on obsolete information
(e.g. delivering a product to some address that is not valid anymore), the repetition of activities that have already been
fulfilled by some other process (e.g. multiple orders or invoices), or disregarding events that call for compensation activities
or the process to hold (e.g. some necessary condition ceases to hold). These errors in the real world lead to customer
complaints, legal cases, and many untraceable societal costs [56]. However, their root cause, process interference, is over-
looked in process management software architectures.

Most work about resolving process interference refers to failing processes or concerns design-time solutions [64,54].
In [55], a run-time mechanism is proposed, which uses dependency scopes and intervention processes to manage inter-
ference discovered during execution. Dependency scopes (DSs) are used to specify critical parts of the BPs whose correct
execution relies on the accuracy of a volatile process variable, i.e. a process variable that can be changed externally during
the execution of the process. If a volatile variable is externally modified while the execution flow resides within the range
of the respective DS, a predefined intervention process (IP) is triggered as a response, with the purpose of resolving the
potential inconsistencies stemming from this change event. In [57], the initial idea is enhanced with an algorithm, which
automates the task of identifying the critical sections of a BP.

By using DSs, it is no longer necessary in the design of the process to incorporate checks prior to each activity whether an
important data element has changed. As a result, the process designer does not need to know all potential process
interactions in advance. However, a significant effort is required for manual specification of the IPs, since the appropriate
IPs may differ considerably depending on the current execution state at which modification of a volatile variable occurred.
For complex processes with numerous activities, it is very difficult and time-consuming to define IPs at design-time, as the
amount of potential IPs may be particularly high. In addition to that, it is difficult to ensure that all important intervention
cases are taken into account. Moreover, as the same BP may be deployed and used by more than one organization, different
IPs have to be specified for each potential interference case at each organization.

The workload due to extensive manual configuration can be significantly reduced by automating the task of IP
specification. Building upon the initial ideas presented in [55,57], in the current paper we propose the use of domain-
independent AI planning to automate the process of specifying IPs. From this perspective, IPs are viewed as plans, which
can be synthesized dynamically on the fly, by combining activities from the BP and available compensation operations.
This composition takes place based on how the BP's knowledge about the world evolves during execution, and how this
knowledge affects workflow tasks. In such a way, the manual work required by the domain designer is reduced to the
specification of the dependency scopes and a high-level goal, which describes in a declarative way the desired consistent
state that has to be reached in case of interference. To realize such a level of automation, the BP specification has to be
enriched with appropriate semantic annotations, in terms of preconditions and effects. The restrictions imposed by the
specific control flow of each BP are inferred automatically, by parsing the syntactic BP specification. An AI planner can then
be employed to resolve inconsistencies at runtime in an automatic way, by resorting to declarative goals rather than
predefined ad hoc processes.

By examining a realistic case-study from the Dutch e-Government, we show how the generation of IPs can be realized by
state-of-the-art planning techniques. A fully-working prototype has been implemented, using the RuG domain-independent
planner [26,28,29] based on dynamic Constraint Satisfaction Problem (CSP) techniques. The RuG planner is equipped with a
number of features that go beyond classical planning, and are of particular relevance to the requirements associated with BP
modeling and repair, such as the efficient handling of numeric variables, explicit support for incomplete knowledge, and
a variety of effects beyond mere assignments. The framework has been implemented and evaluated on a real case-study
from e-Government, in order to show the feasibility of the approach. The focus of the work presented herein is to address
process recovery from inconsistencies that result from process interference. However, the overall approach of using domain-
independent AI planning for BP reconfiguration is more general, and can be used to react to any kind of events.

The remainder of this paper is organized as follows. Section 2 provides an overview of related work, and Section 3
describes a possible interference scenario on a real case-study taken from Dutch e-Government, which plays the role of our
running example. The architecture of the proposed framework is described in Section 4. In Sections 5 and 6, the definitions
and methodologies concerning the proposed approach are presented. The implementation of the framework is described in
Section 7. The performance of the implemented framework is evaluated in Section 8, and the overall conclusions are drawn
in Section 9.

2. Related work

The work presented herein shares many aspects with different subfields of BP management, including work in the areas
of BP recovery, adaptation and process interference. Various viewpoints on these issues are presented and compared in

N.R.T.P. van Beest et al. / Information Systems 39 (2014) 45–7946



Download English Version:

https://daneshyari.com/en/article/396718

Download Persian Version:

https://daneshyari.com/article/396718

Daneshyari.com

https://daneshyari.com/en/article/396718
https://daneshyari.com/article/396718
https://daneshyari.com

