
Supporting historic queries in sensor networks with
flash storage

Adam Dou a, Song Lin a, Vana Kalogeraki c, Dimitrios Gunopulos b,n

a Google, Mountain View, CA, United States
b Department of Informatics and Telecommunications, University of Athens, Athens, Greece
c Department of Informatics, Athens University of Economics and Business, Athens, Greece

a r t i c l e i n f o

Available online 24 April 2012

Keywords:

Sensor networks

Flash memories

Indexing sensor data

Continuous queries

a b s t r a c t

Many recent sensor devices are being equipped with flash memories due to their

unique advantages: non-volatile storage, small size, shock-resistance, fast read access

and power efficiency. The ability of storing large amounts of data in sensor devices

necessitates the need for efficient indexing structures to locate required information.

The challenge with flash memories is that they are unsuitable for maintaining

dynamic data structures because of their specific read, write and wear constraints; this

combined with very limited data memory on sensor devices prohibits the direct

application of most existing indexing methods.

In this paper we propose a suite of index structures and algorithms which permit us

to efficiently support several types of historical online queries on flash-equipped sensor

devices: temporally constrained aggregate queries, historical online sampling queries

and pattern matching queries. We have implemented our methods using nesC and have

run extensive experiments in TOSSIM, the simulation environment of TinyOS. Our

experimental evaluation using trace-driven real world data sets demonstrates the

efficiency of our indexing algorithms.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Wireless sensor networks (WSN) have received con-
siderable attention in recent years, deployed in a variety
of environments to take measurements that would other-
wise be impractical due to hostile environments, remote
locations and the extended periods of time required
[4,17,22,23,25,28,30].

The recent trend of equipping sensors with flash
memories (such as RISE [29] and PRESTO [31]) allows
for sensors to store large amounts of data locally. Sensors
can now exploit the low energy requirements of proces-
sing and data storage by only transmitting the processed
data results in response to specific queries. Such in-network

storage schemes yield significant energy savings since the
communication costs are greatly reduced, prolonging the
lifetime of the sensor network.

The ability to store large amounts of raw data necessi-
tates an efficient method of retrieving historical stream
data in real-time upon request. The flash memories,
however, have many unique characteristics which make
the direct application of existing data indexing techniques
impractical. Recently, several indexing structures have
been proposed for flash-based sensors (such as [5], Presto
[31] Capsule [27], B-Flash [32], R-Flash [35], FlashDB [19],
Microhash [33]). These are capable of answering simple
online aggregate queries such as:

select agr from sensor data ðwhere agr¼max,min,avg,: :Þ

In real world applications, however, the queries issued
by the user are often more complex than the simple online
aggregate queries. For example, in many cases we may want
to compare the current data with data collected at specific

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

0306-4379/$ - see front matter & 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.is.2012.04.002

n Corresponding author. Tel.: þ30 210 727 5227;

fax: þ30 1 909 787 4643.

E-mail address: dg@di.uoa.gr (D. Gunopulos).

Information Systems 39 (2014) 217–232

www.elsevier.com/locate/infosys
www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2012.04.002
dx.doi.org/10.1016/j.is.2012.04.002
dx.doi.org/10.1016/j.is.2012.04.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2012.04.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2012.04.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2012.04.002&domain=pdf
mailto:dg@di.uoa.gr
dx.doi.org/10.1016/j.is.2012.04.002


time in the past. In other cases, we may want to identify
patterns or common occurrences. In all such cases, we need
efficient techniques to store and index historical data (i.e.,
data collected in the past) and keep it up-to-date.

Consider, for example, a person studying weather trends.
He may be interested in asking temporally constrained
queries, such as ‘‘Find the number of sunny days in the month

of February’’, perhaps to compare with different months.
Another example is the ZebraNet mobile sensor system

[25] with GPS enabled devices to gather information about
the environment, where the sensor device’s flash memory
can only hold up to 26 days of collected information. When
dealing with such large amounts of data, it is often sufficient
to supply approximate answers based on a good sample of
sensor data instead of fetching large amounts of the original
data to compute exact results [18]. Taking a random sample
is a very efficient way to approximate the average, histo-
gram or quantile of the original sensor data. In our work, we
are interested in withdrawing a random sample from the
sensor data up to any timestamp for data analysis and query
approximation. For example, one wants to approximate 90%
quantile of all the sensor data until 2006 by withdrawing a
random sample from all the sensor data collected up to
2006. In most cases, the SRAM of the sensor device is too
small (i.e. 3 kB� 10 kB) [3] to keep good samples of the
sensor data for all the possible time moments. However, we
need sophisticated implementations for random sampling if
we want the sampling to be done efficiently (see [1] for a
comprehensive survey). Examples of the queries we want to
answer are the following:

select agr from sensor data where month¼may

select random samples from sensor data up to may 2007

where samplesize ¼ k

The difficulty of realizing indexing structures and sam-
ples to efficiently meet the needs of these queries lies in the
unique characteristics (wear and delete constraints) of the
flash memory and the very limited SRAM capacities. We are
often dealing with not only large amounts of data, but also
large amounts of information required to sufficiently index
that data (often more than can be contained within the
sensor’s SRAM). Retrieving this historical data in real-time
has been considered in the past to be prohibitively expen-
sive. It is not trivial to maintain dynamic data structures in
flash without repeatedly updating pages which contain
frequently changing data. For example, trying to maintain
a priority heap can cause unacceptable levels of wear in the
block containing the root of the heap.

Our contribution: In this paper, we propose a suite of
index structures and algorithms which permit us to
efficiently support real-time querying of historical data
in flash-equipped sensor devices. More specifically, we
will address the following queries:

� Temporally Constrained Aggregate Queries: compute
the aggregate sensor reading over any time period.
� Historical Online Sample Queries: compute a random

sample of the data generated by the sensor up until
any time.

� Pattern Matching Queries: find the most similar data
pattern to a given query pattern.

By providing answers to these queries we are able to
support a much wider range of applications. We have
implemented our techniques using nesC [15], the pro-
gramming language of the TinyOS [14] operating system.
Our trace-driven experimental evaluations confirm the
efficiency of both the proposed indexing structures and
the corresponding query algorithms.

2. Background

The conservation of energy in a sensor network has a
major impact on the lifespan of individual sensor devices;
this has already been vastly improved by the introduction
of flash memories into sensor devices. The relatively low
energy requirements of storing data on flash memories
have allowed sensor devices to store data locally and only
transmit relevant information when requested by specific
queries. Although this has resulted in large energy sav-
ings, there are still significant inefficiencies caused by the
particularities of flash memories which cause suboptimal
responses to large classes of queries. To provide an
efficient solution to these queries, we investigate the
memory architecture of the sensor devices, the distinct
characteristics of flash memories and several practical
queries in sensor network applications.

In this section we briefly present the memory archi-
tecture of the sensor devices, along with the distinct
characteristics of the flash memories and several practical
queries in sensor network applications.

2.1. Flash-equipped sensors

The memory architecture in a flash-equipped sensor
device has many differences from that of traditional
computer storage. A flash-equipped sensor device is
composed of five major components (shown in Fig. 1):

� Micro control unit: the core component of a sensor
device, it performs all the data processing and
computation
� Sensor unit: a sensor device consists of one or more sensor

units used to measure various environmental quantities

Fig. 1. Memory Architecture of a typical flash-equipped sensor.

A. Dou et al. / Information Systems 39 (2014) 217–232218



Download English Version:

https://daneshyari.com/en/article/396726

Download Persian Version:

https://daneshyari.com/article/396726

Daneshyari.com

https://daneshyari.com/en/article/396726
https://daneshyari.com/article/396726
https://daneshyari.com

