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1. Introduction

ABSTRACT

Given a hypergraph and a set of embedded functional dependencies, we investigate the
problem of determining the conditions under which we can efficiently generate
redundancy-free XML storage structures with as few scheme trees as possible.
Redundancy-free XML structures guarantee both economy in storage space and the
absence of update anomalies, and having the least number of scheme trees requires the
fewest number of joins to navigate among the data elements. We know that the general
problem is intractable. The problem may still be intractable even when the hypergraph
is acyclic and each hyperedge is in Boyce-Codd normal form (BCNF). As we show here,
however, given an acyclic hypergraph with each hyperedge in BCNF, a polynomial-time
algorithm exists that generates a largest possible redundancy-free XML storage
structure. Successively generating largest possible scheme trees from among hyper-
edges not already included in generated scheme trees constitutes a reasonable heuristic
for finding the fewest possible scheme trees. For many practical cases, this heuristic
finds the set of redundancy-free XML storage structures with the fewest number of
scheme trees. In addition to a correctness proof and a complexity analysis showing that
the algorithm is polynomial, we also give experimental results over randomly generated
but appropriately constrained hypergraphs showing empirically that the algorithm is
indeed polynomial.

© 2010 Elsevier B.V. All rights reserved.

databases is a relational table. This table-storage method
requires various mapping rules to translate between XML

XML databases are emerging [4]. Two types of XML
databases are native XML databases and XML-enabled
databases. The fundamental unit of (logical) storage in
native XML databases is an XML document [3]. Thus,
designing XML documents for efficient retrieval and
update has been a topic of recent research [8-10]. The
fundamental unit of (logical) storage in XML-enabled
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document schemas and database schemas and employs
middleware to transfer data between XML documents and
databases [3,17,22]. A recent study shows that designing
XML documents for efficient retrieval and update can also
guarantee well-designed relational storage structures for
XML-enabled databases [11]. Thus, for both native XML
databases and XML-enabled databases, designing XML
documents for efficient retrieval and update is an
appropriate focus for study.

Similar to designing relational tables by normalizing
relational schemas, designing XML documents for efficient
retrieval and update is about normalizing XML storage
schemas. Normalized XML storage schemas remove the
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possibility of redundancy with respect to constraints and
typically make both retrieval and update more efficient. Thus,
there has been a flurry of research work on normalization of
XML documents [1,5,6,13,15,21,24-26].

This paper, which follows up on our previous work
[6,15], is another step in this direction. Like [15], instead
of generating XML DTDs or XML Schema specifications
directly, we first generate XML storage structures. These
storage structures, called scheme trees here and else-
where [16], are simply generic hierarchical structures.
After obtaining a set of scheme trees, we can apply the
mapping method in [1], or equivalently, those cited
in [15], to generate a DTD or the basic structural compo-
nents of an XML Schema document. These mappings
simply represent scheme trees syntactically in these XML
specification schemes in a one-to-one correspondence.
Therefore, under these mappings, there is redundancy in a
scheme-tree instance if and only if there is redundancy in
an XML document. Hence, our discussion in this paper
only needs to focus on scheme trees and scheme-tree
instances, without concern for the mapping to DTDs or to
XML Schemas.

In [15] we showed that generating a minimum number
of redundancy-free scheme trees from a conceptual-
model hypergraph is NP-hard. Here we consider special-
case conditions in an effort to find an efficient algorithm.
First, we limit ourselves to regular hypergraphs [2,14],
which are a special type of conceptual-model hyper-
graphs. Also, since it is known that checking whether
relational schemas are in Boyce-Code normal form (BCNF)
is intractable [12], we limit hypergraphs to those in
which each hyperedge is in BCNF with respect to the
given functional dependencies (FDs). Next, since cycles in
hypergraphs introduce ambiguity and typically cause
difficulties, we assume that hypergraphs are acyclic.
Finally, we assume that the only multivalued dependen-
cies (MVDs) are hypergraph-generated MVDs. Even with
these assumptions, however, it is an open problem to find
an algorithm that generates a minimum number of
redundancy-free scheme trees in polynomial time. We
therefore settle on a heuristic that resolves the issue for
many practical cases and likely gives good results for all
cases.

As the basis of our heuristic, we provide in this paper a
polynomial-time algorithm that generates a largest
scheme tree from an acyclic hypergraph and a set of FDs
where each FD is embedded in some hyperedge and each
hyperedge is in BCNF. As an approximation to generating
a minimum number of redundancy-free scheme trees, we
use this heuristic repeatedly on the remaining hyperedges
not already included in generated scheme-tree storage
structures. This heuristic always yields redundancy-free
scheme trees and often, especially in practical cases,
yields the fewest.

To illustrate our approach and to show some of the
pitfalls involved, we present a motivating example. In this
example, we rely on intuition for some undefined terms.
Later in Section 2, we formally define these terms.

Example 1. Fig. 1(a) shows an acyclic hypergraph and
an FD, Retailer Item— Price, embedded in one of the
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Fig. 1. The acyclic hypergraph and relationships of Example 1.

hyperedges. Fig. 1(b) shows some possible relationships
among instance values for the hyperedges in Fig. 1(a).
For example, two of the relationships are “retailer ry sells
item i; for $3” and “manufacturer m; has factory f;.”
Figs. 2(a)-(c) show three possible sets of scheme trees and
their associated instances taken from the relation-
ships in Fig. 1(b). In Fig. 2(a), because there is only one
scheme-tree instance, the data values are compactly
stored. However, the instance data is redundant. Since
manufacturer m; is necessarily stored twice, the depen-
dent factories, which must be the same, are therefore
redundantly stored more than once. In Fig. 2(b), even
though no data redundancy is present in any of the scheme-
tree instances, there are more trees than necessary. The
largest redundancy-free scheme tree for this example is the
one on the left in Fig. 2(c), which balances the requirements
of data redundancy and compactness of data. Creating this
scheme tree first followed by creating a scheme tree from
the remaining hyperedge {Manufacturer, Factory} yields the
fewest possible redundancy-free scheme trees.

We give the details of our contribution of generating a
largest possible scheme tree from an acyclic hypergraph
in polynomial time as follows. We first lay the ground
work by providing basic definitions in Section 2. Based on
this foundation, we present the polynomial-time, scheme-
tree generation algorithm in Section 3. Throughout
Sections 2 and 3 we provide examples to motivate and
illustrate definitions and algorithmic procedures. We
present experimental data to verify our algorithm in
Section 4 and formally prove our claims in Section 5. We
make concluding remarks in Section 6.

2. Basic definitions

Since we limit ourselves to regular hypergraphs [2,14],
we make the universal-relation-scheme assumption [20].
This is different from our previous work [15] for which we
did not make such an assumption.

2.1. Acyclic hypergraphs

To make this paper self-contained, we borrow some
definitions from previous work. The first four definitions
are from [2].
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