
Query rewritings using views for XPath queries, framework,
and methodologies

Jian Tang a,�, Ada Waichee Fu b,1

a Department of Computer Science, Memorial University of Newfoundland, Elizabeth Ave, St. John’s NL, Canada A1B 3X5
b Department of Computer Science and Engineering, Chinese University of Hong Kong, Shatin, Hong Kong

a r t i c l e i n f o

Article history:

Received 9 September 2006

Received in revised form

26 January 2009

Accepted 26 October 2009

Recommended by: Y. Ioannidis

Keywords:

XML

Query

View

Rewriting

Pattern

Containment

Embedding

Maximality

a b s t r a c t

Query rewriting using views is a technique that allows a query to be answered

efficiently by using pre-computed materialized views. It has many applications, such as

data caching, query optimization, schema integration, etc. This issue has been studied

extensively for relational databases and, as a result, the technology is maturing. For XML

data, however, the work is inadequate. Recently, several frameworks have been

proposed for query rewriting using views for XPath queries, with the requirement that a

rewriting must be complete. In this paper, we study the problem of query rewriting

using views for XPath queries without requiring that the rewriting be complete. This

will increase its applicability since in many cases, complete rewritings using views do

not exist. We give formal definitions for various concepts to formulate the problem, and

then propose solutions. Our solutions are built under the framework for query

containment. We look into the problem from both theoretic perspectives, and

algorithmic approaches. Two methods to generate rewritings using views are proposed,

with different characteristics in terms of generalities and efficiencies. The maximality

properties of the rewritings generated by these methods are discussed.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Since it emerged as a language for information transfer
and storage late last century, XML has caught increasing
attentions from the research communities across different
disciplines for its flexible encoding schemes and expres-
sive power. Recently, due to the near completion of the
standardization of XQuery language [25], the usage of
XML has reached far beyond the simple information-
encoding domain. Such a broad adoption has led not only
to the developments of new paradigms, but also the
reformulations of some existing theories and methodol-
ogies in relational databases. One of the areas in which

such a reformulation is in a pressing need is in query
processing. Due to the relatively complex structure of
XML documents compared with relation tables, efficiency
in querying XML documents has become one of the most
widely investigated topics in recent years.

XQuery employs XPath as its core sub-language for
navigating XML documents. In the query processing
literature for XML documents, therefore, a lot of attentions
have been in XPath processing. One approach is query
rewriting. It is a technique that allows a query to be
answered efficiently by using pre-computed materialized
views. It has many applications, such as data caching, query
optimization, schema integration, etc. This issue has been
studied extensively, in both theoretical and algorithmic
aspects, for relational databases. As a result, sound theories
and methodologies have been proposed in that context. For
XML data, however, the work is inadequate. Recently,
several frameworks have been proposed for query rewriting
using views for XPath queries, with the requirement that a

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

ARTICLE IN PRESS

0306-4379/$ - see front matter & 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.is.2009.10.006

� Corresponding author. Tel.: +1 7097374580; fax: +1 7097372009.

E-mail addresses: jian@mun.ca (J. Tang),

adafu@cse.cuhk.edu.hk (A.W. Fu).
1 Tel.: +852 26098432; fax: +852 26035024.

Information Systems 35 (2010) 315–334

www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2009.10.006
mailto:jian@cs.mun.ca
mailto:adafu@cse.cuhk.edu.hk

rewriting must be complete, being that all the answers to
the query running on the original database must be
generated by the rewriting running on the materialized
views [2,3,22]. Requiring a complete rewriting using views,
however, is not always realistic. The most prominent
scenario is in the area of schema integration. Local-as-view
(LAV) is an important strategy for schema integration in
database systems [8]. In the LAV model, queries are written
over a global schema (also called a mediated schema). Views
are queries that describe the contents of the local data
sources, and are also written over the global schema. The
model does not assume the existence of a separate ‘original’
data source. The direct goal of a query is to retrieve
information from the local data sources. To accomplish this,
it must be rewritten into some query that can run on the
local data sources and produce the answer it needs. Since
there is no original data source, ‘completeness’ of the query
results generated from the local data sources is not required.
Incomplete rewriting may also be useful in the case where
the original data are not conveniently accessible but a
materialized view is available. In this case, a user has an
option to use the materialized view to obtain an answer
which is only a proper subset of the answer he/she has
expected from the original data.

It is well known that if a rewriting using view is
complete, then the query and its rewritten version are
equivalent. Such an equivalence provides valuable in-
formation to guide an algorithm to generate the rewriting.
If the completeness requirement is removed, however, the
aforementioned information will not be available. This
makes generating a rewriting using views with desirable
properties a challenging task. In this paper, we study the
problem of query rewriting using views for XPath queries
without requiring the rewriting be equivalent to the
original query. We give formal definitions for various
concepts to formulate the problem. We look into the
problem from both theoretic perspectives, and algorith-
mic approaches, and then propose solutions. Our solution
is built on top of the theories for query containment. We
introduce the concept of ‘trap’, based on which two
methods to generate rewritings using views are proposed.
These methods have different characteristics in terms of
generalities and efficiencies. We describe conditions
under which our generated rewritings are optimal. The
class of the XPath queries that we consider in this paper
uses four kinds of symbols, /, //, [�], and *, which,
respectively, denote child axis, descendant axis, branches,
and wildcard. We denote this class by XP[/, //, [], *]. The
query in this class can be described in a condensed
grammar as follows:

X ¼ X=XjXJXjX½X�jLj�

where L denotes labels from an infinite symbol set. We
will omit tagging templates that normally accompany
XPath queries, and concentrate only on the navigation
scripts. This is because, technically, tagging templates and
navigation scripts are orthogonal, and the navigation
scripts are where the most technical sophistications arise
in the query rewriting.

The rest of the paper is organized as follows. In Section 2,
we propose a model, and introduce related concepts, and

then precisely define the problem. In Section 3, we
introduce two alternative solutions to the problem, and
discuss their strengths and limitations. In Section 4, we
describe the conditions under which the rewritings using
views generated by our methods are optimal. Section 5
concludes the paper by summarizing the main results,
and suggesting some issues for further study.

1.1. A motivating example

If the information required by a query has already been
included in the result of a materialized view, and there is a
way to retrieve it, then this usually will make the query
processing more efficient. Consider the XPath query /

publication/book[@review_id]//author/name. This query re-
quires the names of the authors of the books which belong
to the publication category and have a review_id attribute.
Let us consider three cases: (1) The view is /publication/

book. In this case the answer of the query is retrievable
from the result of the view. It is because, according to the
execution semantics, this query will return the entire sub-
tree rooted at each book node in the input document
tree. (2) The view is /publication[@permit_no]/book. In this
case, we cannot retrieve a complete answer to the query
from the view result. This incompleteness is due to the lack
of data, and is intrinsic to the way the queries are
formulated. (3) The view is the same as that in the first
case, but the query is /publication[@permit_no]/book[@-

review_id]//author/name. In this case, the required informa-
tion is not retrievable. This is not due to the lack of data,
but due to the lack of knowledge: we do not know which
book in the view result is a child of a publication with
permit_no attribute. Obviously, the first case is most
preferable. However, given the way the queries are
formulated in the second case, if we can get everything
contained in the result that fits the user’s requirement, it
may still be useful if sufficient data is difficult to obtain.
Note that the problem arising in the third situation is
worse than that in the second case: we cannot retrieve any
answer without risking an error.

2. Concepts and definitions

In this paper, we will use the following notations. For
any tree or path t, |t| denotes the number of nodes in t. We
use /a,y,bS to denote a generic path which can be of any
length (in nodes), where a and b are the start and the end
nodes of the path, respectively, while /aS and /a, bS
denote a path with a length of one and two, respectively.
For two graphs, in particular, trees, we use the terms
‘isomorphic’, ‘equal’, ‘same’ interchangeably. Sometimes,
for easy presentation and notations, we will allow same
nodes (and associated edges) to belong to multiple trees,
and therefore avoid using isomorphism symbols on them.

2.1. Pattern tree and input tree

An XPath query can be denoted as a tree, called a
pattern tree (or simply pattern). Each node is attached
with a label, except for the root. The tree may contain

ARTICLE IN PRESS

J. Tang, A.W. Fu / Information Systems 35 (2010) 315–334316

Download English Version:

https://daneshyari.com/en/article/396743

Download Persian Version:

https://daneshyari.com/article/396743

Daneshyari.com

https://daneshyari.com/en/article/396743
https://daneshyari.com/article/396743
https://daneshyari.com

