Information Systems 34 (2009) 290-303

Contents lists available at ScienceDirect =
Information
St
Information Systems
journal homepage: www.elsevier.com/locate/infosys ssomccen

PHIRST: A distributed architecture for P2P information retrieval *

Avi Rosenfeld **, Claudia V. Goldman €, Gal A KaminkaP, Sarit Kraus®

@ Department of Industrial Engineering, Jerusalem College of Technology, Jerusalem, Israel
b Department of Computer Science, Bar-Ilan University, Ramat-Gan, Israel

€ Samsung Telecom Research Israel, Yakum, Israel

ARTICLE INFO

Article history:

Received 22 August 2007
Received in revised form

5 June 2008

Accepted 24 August 2008
Recommended by: P. Loucopoulos

Keywords:

Distributed databases
Information retrieval
Peer to peer systems

ABSTRACT

Recent progress in peer to peer (P2P) search algorithms has presented viable structured
and unstructured approaches for full-text search. We posit that these existing
approaches are each best suited for different types of queries. We present PHIRST, the
first system to facilitate effective full-text search within P2P databases. PHIRST works by
effectively leveraging between the relative strengths of these approaches. Similar to
structured approaches, agents first publish terms within their stored documents.
However, frequent terms are quickly identified and not exhaustively stored, resulting in
a significant reduction in the system’s storage requirements. During query lookup,
agents use unstructured search to compensate for the lack of fully published terms.
Additionally, they explicitly weigh between the costs involved in structured and
unstructured approaches, allowing for a significant reduction in query costs. Finally, we
address how node failures can be effectively addressed through storing multiple copies
of selected data. We evaluated the effectiveness of our approach using both real-world
and artificial queries. We found that in most situations our approach yields near perfect
recall. We discuss the limitations of our system, as well as possible compensatory

strategies.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Full-text search, or the ability to locate documents
based on terms found within documents, is arguably one
of the most essential tasks in any distributed database [1].
Search engines such as Google [2] have demonstrated
the effectiveness of centralized search. However, classic
solutions also demonstrate the challenge of large-scale
search. For example, a search on Google for the word, “a”,
currently returns over 15 billion pages [2]. Though

* This material is based upon work supported in part by ISF Grant #
1685/07.
* Corresponding author. Tel.: +972 8 926 8028.
E-mail addresses: rosenfa@jct.ac.il (A. Rosenfeld),
c.goldman@samsung.com (C.V. Goldman),
galk@cs.biu.ac.il (G.A. Kaminka), sarit@cs.biu.ac.il (S. Kraus).
! Portions of the work by the primary author was completed while at
Bar-Ilan University.

0306-4379/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/].i5.2008.08.002

Google’s servers are capable of storing this magnitude
of storage, this approach is infeasible for distributed
solutions involving more limited devices.

In this paper, we address the challenge of implement-
ing full-text search within peer-to-peer (P2P) network
databases. Our motivation is to demonstrate the feasibility
of implementing a P2P database comprised of resource
limited machines, such as handheld devices. Thus, any
solution must be keenly aware of the following con-
straints: cost—many networks, such as cellular networks,
have costs associated with each message. One key goal of
the system is to keep communication costs low. Hardware
limitations—we assume each device is limited in its
amount of storage. Any proposed solution must take this
limitation into consideration. Distributed—any proposed
solution must be distributed equitably. As we assume a
network of agents with similar hardware composition, no
one agent can be required to have storage or communica-
tion requirements grossly beyond that of other machines.

www.sciencedirect.com/science/journal/is
www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2008.08.002
mailto:rosenfa@jct.ac.il
mailto:c.goldman@samsung.com
mailto:galk@cs.biu.ac.il
mailto:sarit@cs.biu.ac.il

A. Rosenfeld et al. / Information Systems 34 (2009) 290-303 291

Resilient—our assumption is that peers are able to connect
and disconnect at will from the network. As a result, our
system must be able to deal with peer failures, a concept
typically referred to as churn [3,4].

To date, three basic approaches have been proposed for
full-text search within P2P databases [5]. Structured
approaches are based on the classic information retrieval
(IR) theory [6], and use inverted lists to quickly find query
terms. However, they rely on expensive publishing and
query lookup stages. A second approach creates super-
peers, or nodes that are able to locally interact with a large
subset of agents. While this approach does significantly
reduce publishing costs, it violates the distributed re-
quirement in our system. Finally, unstructured approaches
involve no publishing, but are unsuccessful in locating
hard to find items [5].

In this paper we present PHIRST, a system for Peer-to-
peer Hybrid Restricted Search for Text. This approach has
three key contributions. First, PHIRST is the first system
capable of performing distributed full-text search—
something previously thought to be infeasible [1]. The
key to PHIRST’s success is its ability to restrict the amount
of data needed to be published to execute full-text search.
Not only does this ensure that the hardware limitations of
agents’ nodes are not exceeded, it also better distributes
the system’s storage. Furthermore, a peer’s average data
load actually decreases as peers with documents are
added. Thus, the system becomes progressively more
scalable as its size increases. Nonetheless, PHIRST is
still able to effectively process full-text search through
a hybrid approach that leverages the advantages of
structured search (SS) and unstructured search (US)
algorithms. PHIRST’s limited published data are used to
locate hard-to-find items. US is used to find common
terms that were not published. Second, not only does
PHIRST present a feasible approach for full-text search,
but it also processes these searches with lower cost as
well. We also present full-text query algorithms where
nodes explicitly reason based on estimated search costs
about which search approach to use, reducing query costs.
Finally, we present how storing redundant copies of these
entries can effectively deal with temporary node failures
without the need of any centralized mechanism.

To validate the effectiveness of PHIRST, we used a real
web corpus [7]. We found that the hybrid approach we
present used significantly less storage to store all inverted
lists than previous approaches where all terms were
published [1,5]. Next, we used artificial and real queries to
evaluate the system. The artificial queries demonstrated
the strengths and limitations of our system. The unstruc-
tured component of PHIRST was extremely successful in
finding frequent terms, and the structured component
was equally successful in finding any pairs of terms where
at least one term was not frequent. In both of these cases,
the recall of our system was always 100%. The system’s
performance did have less than 100% recall when terms of
2 or more words of medium frequency were constructed.
We present several compensatory strategies for addres-
sing this limitation in the system. Finally, to evaluate the
practical impact of this potential drawback, we studied
real queries taken from IMDB’s movie database [8] and

found PHIRST was in fact effective in answering these
queries.

2. Related work

Classical IR systems use a centralized server to store
inverted lists of every term in every document within the
system [6]. These lists are “inverted” in that the server
stores lists of the location for each term, and not the term
itself. Inverted lists can store other information, such as
the term’s location in the document, the number of
occurrences for that term, etc. Search results are then
returned by intersecting the inverted lists for all terms in
the query. These results are then typically ranked using
heuristics such as TF/IDF [9]. For example, if searching for
the terms, “family movie”, one would first lookup the
inverted list of “family”, intersect that file with that of
“movie”, and then order the results before sending them
back to the user.

The goal of a P2P system is to provide results of equal
quality without the need of a centralized server with the
inverted lists. Potentially, the distributed solution may
have advantages such as no single point of failure, lower
maintenance costs, and more up-to-date data. Toward this
goal a variety of distributed mechanisms have been
proposed.

Structures such as distributed hash tables (DHTs) are
one way to distribute the process of storing inverted lists.
Many DHT frameworks have been presented, such as
Bamboo [4], Chord [10], and Tapestry [11]. A DHT could
then be used for IR in two stages: publishing and query
lookups. As agents join the network, they need to update
the system’s inverted lists with their terms. This is done
by every agent sending a “publish” message to the DHT
with the unique terms it contains. In DHT systems, these
messages are routed to the peer with the inverted list in
log(N) hops, with N being the total number of agents in
the network [4,10]. During query lookups, an agent must
first identify which peer(s) store the inverted lists for the
desired term(s). Again, this lookup can be done in log(N)
hops [4,10]. Then, the agent must retrieve these lists and
intersect them to find which peer(s) contain all of the
terms.

Li et al. [1] present formidable challenges in imple-
menting both the publishing and lookup phases of this
approach in large distributed networks. Assuming a word
exists in all documents, its inverted list will be of this
length. Thus, the storage requirements for these inverted
lists are likely to exceed the hardware abilities of agents in
these systems as the number of documents grows.
Furthermore, sending large lists will incur a large com-
munication cost, even potentially exceeding the band-
width limitation of the network. Because of these
difficulties, they concluded that naive implementations
of P2P full-text search are simply infeasible.

Several recent developments have been suggested to
make a full-text distributed system viable. One suggestion
is to process the SS starting with the node storing the term
with the fewest peer entries in its inverted list. That node
then forwards its list to the node with the next longest list,

Download English Version:

https://daneshyari.com/en/article/396768

Download Persian Version:

https://daneshyari.com/article/396768

Daneshyari.com

https://daneshyari.com/en/article/396768
https://daneshyari.com/article/396768
https://daneshyari.com

