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The nearest neighbor search problem is fundamental in computer science, and in spite of
the effort of a vast number of research groups, the instances allowing an efficient solution
are reduced to databases of objects of small intrinsic dimensions. For intrinsically high-
dimensional data, the only possible solution is to compromise and use approximate or
probabilistic approaches. For the rest of the instances in the middle, there is an over-
whelmingly large number of indexes of claimed good performance. However, the problem
of parameter selection makes them unwieldy for use outside of the research community.
Even if the indexes can be tuned correctly, either the number of operations for the index
construction and tuning is prohibitively large or there are obscure parameters to tune-up.
Those restrictions force users from different fields to use brute force to solve the problem
in real world instances.

In this paper, we present a family of indexing algorithms designed for end users. They
require as input, the database, a query sample and the amount of space available. Our
building blocks are standard discarding rules, and the indexes will add routing objects
such as pivots, hyperplane references or cluster centroids. Those indexes are built incre-
mentally and will self-tune by greedily searching for a global optimum in performance.

We experimentally show that using this oblivious strategy our indexes are able to
outperform state of the art, manually fine-tuned indexes. For example, our indexes are
twice as fast than the fastest alternative (LC, EPT or VPT) for most of our datasets. In the
case of LC, the faster alternative for high dimensional datasets, the difference is smaller
than 5%. In the same case, our indexes are at least one order of magnitude faster to build.
This superior performance is maintained for large, high dimensional datasets (100 million
12-dimensional objects). In this benchmark, our best index is two times faster than the
closest alternative (VPT), six times faster than the majority of indexes, and more than sixty
times faster than the sequential scan.
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1. Introduction

Nearest neighbor search is a pervasive problem in
computer science. It appears in many applications such as
textual and multimedia information retrieval, machine
learning, streaming compression, lossless and lossy com-
pression, bioinformatics, and biometric identification and
authentication [9,25], just to name a few.
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Some applications, e.g. multimedia databases, resort to
intermediate representations such as vectors, sets, or
strings of symbols. Those representations often produce
intrinsically high-dimensional datasets, which in turn may
lead to an exhaustive, sequential search at query time even
if using an index. This is because nearest neighbor
searching is known to be exponentially difficult on the
intrinsic dimension of the data as reported in several
places (e.g. [9,23]). In those situations, the only plausible
solution is to use approximate or probabilistic methods,
such that speed is traded for the quality of the solution.
Examples of approximate techniques are [26,6,12,1,15,14].

We aim at tractable instances of datasets, where exact
solutions are essential. There are applications where an
approximate or a probabilistic approach cannot be used.
Think for example in biometric identification. In this
application, neither a miss (failing to identify the nearest
neighbor of an object) nor a false claim (giving an output
which is not the nearest neighbor) are acceptable because
both lead to a failure of the identification system. For this
particular example, the only possible solution is a
sequential scan over all the objects in the database. The
usual way to scale such a system is by using massive
parallelism. Exact proximity searching is also interesting
from a pure academic perspective.

It is hard to draw a line between tractable instances and
those which only accept an approximate solution due to its
high intrinsic dimensionality. One of the sources of this
ambiguity is a large number of potential solutions using
indexes with claimed low complexity. If a practitioner
looks for a solution, the efficiency claims of many papers
could be misleading. We will analyze those factors from
this practical perspective.

The most sensitive issue is the absence of a complexity
model capable of capturing the behavior of an index in
realistic circumstances. This limitation implies that
indexes would be compared experimentally. Even in this
setup there are two alternatives, the first one is to count
the number of distance computations as the yardstick for
index comparison. The rationale behind this choice is to
consider distance computation as the leading cost opera-
tion, which in turn should allow comparing different
indexes using disparate datasets.

One problem with this approach is that the intrinsic
dimensionality of the data is a critical factor in the per-
formance; hence the supposed independence of the
dataset vanishes. The other alternative is to use standard
benchmarks to compare all the indexes, and using the
average time spent on queries as the yardstick. This
method has the disadvantage of being unable to compare
between indexes belonging to different authors, in differ-
ent computer systems, and different papers without
implementing everything each time. To avoid this dis-
advantage we normalized the total query time using as
reference a sequential scan. While this measure still hides
many practical issues, like cache usage, and the workload
in a multi-user environment; it will give a better guide for
practitioners.

An example of hidden cost using the number of dis-
tance computations model is the sequential scan over the
data to filter. Clear examples are the AESA algorithm [27]

for exact proximity searching, and the Permutation based
index [5] in approximate proximity searching. The com-
bination of a relatively cheap distance function and high
internal cost can lead to a putative fast index when
counting the distance computations, which will be slow in
practice.

An additional source of unfairness in the comparison of
indexes is the memory usage and the preprocessing time
overhead for index construction and maintenance. Some
indexes are claimed to be competitive, but the construc-
tion cost and/or the space overhead are prohibitive. Below
we discuss the most competitive indexes in the literature,
along with their possible shortcomings.

1.1. A brief survey of exact indexes

In AESA [27] the index consists of the (O(n?)) distances
among the objects in the database stored in a table. For
querying, an initial random pivot is selected and using the
triangle inequality all the non-relevant objects are filtered.
From the remaining objects, the next pivot is selected close
to the query using some cheaply computed distance. This
process is repeated iteratively until only relevant objects
remain in the collection. Those remaining objects will be
the answer to the query. The claimed complexity of this
method is a constant number of distance computations.
However, it is necessary to compute a linear number of
arithmetic and logical operations, along with a quadratic
complexity in preprocessing and storage costs. A restric-
tion of the same idea is presented in LAESA [16], where a
constant number of pivots are used; however, the claimed
complexity at search time also increases.

Chavez et al. [9] proved that any pivot based metric
index requires at least a O(log(n)) random pivots, with n
the size of the database. However, the base of the loga-
rithm depends on the intrinsic dimension, needing larger
indexes as the intrinsic dimension increases. Above certain
intrinsic dimensionality, the optimal number of pivots may
not fit in main memory; hence, the rule of thumb is to use
as many pivots as they fit. Proceeding in this way reduces
the number of distances computed to solve a query, and it
is useful for expensive distance functions. However, many
of these indexes have a high internal cost, surpassing the
cost of a sequential scan. Under this scheme, the selection
of pivots is essential to reduce both the memory costs and
the number of distances computed. The search time must
be several times smaller than the sequential scan, to be of
use in practice.

Pivot selection strategies: Since it is critical for the per-
formance of pivot based indexes, a natural question is how
to select good pivots. A fair rule is to select the pivots
randomly, but it is well known that the selection affects
the performance of the search. Bustos et al. [2] introduced
several pivot-selection strategies. The core of their con-
tribution is a method to compare collections of pivot sets,
to decide which one has better performance. The authors
claim that a better set of pivots will have a distance dis-
tribution of the mapped space with a larger mean value. In
particular, they propose an incremental selection strategy,
which consists in taking a set of N candidate pivots, and
select the best one, say p;. Then, from another set of N
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