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ABSTRACT

Nowadays, we are witnessing the fast production of very large amount of data, particu-
larly by the users of online systems on the Web. However, processing this big data is very
challenging since both space and computational requirements are hard to satisfy. One
solution for dealing with such requirements is to take advantage of parallel frameworks,
such as MapReduce or Spark, that allow to make powerful computing and storage units on
top of ordinary machines. Although these key-based frameworks have been praised for
their high scalability and fault tolerance, they show poor performance in the case of data
skew. There are important cases where a high percentage of processing in the reduce side
ends up being done by only one node.

In this paper, we present FP-Hadoop, a Hadoop-based system that renders the reduce
side of MapReduce more parallel by efficiently tackling the problem of reduce data skew.
FP-Hadoop introduces a new phase, denoted intermediate reduce (IR), where blocks of
intermediate values are processed by intermediate reduce workers in parallel. With this
approach, even when all intermediate values are associated to the same key, the main part
of the reducing work can be performed in parallel taking benefit of the computing power
of all available workers.

We implemented a prototype of FP-Hadoop, and conducted extensive experiments
over synthetic and real datasets. We achieved excellent performance gains compared to
native Hadoop, e.g. more than 10 times in reduce time and 5 times in total execution time.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

versions such as Spark [2], that allow to make powerful
computing and storage units on top of ordinary machines.

In the past few years, advances in the Web have made it
possible for the users of information systems to produce
large amount of data. However, processing this big data is
very challenging since both space and computational
requirements are hard to satisfy. One solution for dealing
with such requirements is to take advantage of parallel
frameworks, such as MapReduce [1] or its IO-efficient
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The idea behind MapReduce is simple and elegant.
Given an input file of key-value pairs, and two functions,
map and reduce, each MapReduce job is executed in two
main phases. In the first phase, called map, the input data
is divided into a set of splits, and each split is processed by
a map task in a given worker node. These tasks apply the
map function on every key-value pair of their split and
generate a set of intermediate pairs. In the second phase,
called reduce, all the values of each intermediate key are
grouped and assigned to a reduce task. Reduce tasks are
also assigned to worker machines and apply the reduce
function on the created groups to produce the final results.
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Although MapReduce and Spark frameworks have been
praised for their high scalability and fault tolerance, they
show poor performance in the case of data skew. There are
important cases where a high percentage of processing in
the reduce side ends up being done by only one node. Let
us illustrate this by an example.

Example 1. Top accessed pages in Wikipedia. Suppose we
want to analyze the statistics! that the free encyclopedia,
Wikipedia, has published about the visits of its pages by
users. In the statistics, for every hour, there is a file in
which for each visited page, there is a line containing some
information including, among others, its URL, language
and the number of visits. Given a file, we want to return
for each language, the top-k% accessed pages, e.g., top 1%.

To answer this query, we can write a simple program as
in the following Algorithm?:

Algorithm 1. Map and reduce functions for Example 1.
map( id : K1, content : V1)
foreach line (lang, page_id, num_visits, ...) in
content do
| emit (lang, page_info = (num_visits, page_id))
end

reduce( lang : K2, pages_info : list(V2) )
Sort pages_info by num_visits
foreach page_info in top k% do

| emit (lang, page_id)
end

In this example, the load of reduce workers may be
highly skewed. In particular, the worker that is responsible
for reducing the English language will receive a lot of
values. According to the statistics published by Wikipedia,®
the percentage of English pages over total was more than
70% in 2002 and more than 25% in 2007. This means for
example that if we use the pages published up to 2007,
when the number of reduce workers is more than 4, then
we have no way for balancing the load because one of the
nodes would receive more than 1/4 of the data. The
situation is even worse when the number of reduce tasks
is high, e.g., 100, in which case after some time, all reduce
workers but one would finish their assigned task, and the
job has to wait for the responsible of English pages to
finish. In this case, the execution time of the reduce phase
is at least equal to the execution time of this task, no
matter the size of the cluster.

There have been some proposals to deal with the pro-
blem of reduce side data skew. One of the main approa-
ches is to try to uniformly distribute the intermediate
values to the reduce tasks, e.g., by dynamically reparti-
tioning the keys to the reduce workers [3]. However, this
approach is not efficient in many cases, e.g., when there is

! http://dumps.wikimedia.org/other/pagecounts-raw/

2 This program is just for illustration; actually, it is possible to write a
more efficient code by leveraging on the sorting mechanisms of
MapReduce.

3 http://en.wikipedia.org/wiki/Wikipedia:Size_of Wikipedia

only one single intermediate key, or when most of the
values correspond to one of the keys.

One solution for decreasing the reduce side skew is to
filter the intermediate data as much as possible in the map
side, e.g., by using a combiner function. However, the input
of the combiner function is restricted to the data of one
map task, thus its filtering power is very limited for some
applications. Let us illustrate this by using our problem of
top-1%. Suppose we have 1 TB of Wikipedia data, and 200
nodes for processing them. To be able to filter some
intermediate data by the combiner function, we should
have more than 1% of the total values of at least one key
(language) in the map task. Thus, if we use the default
splits of Hadoop (64 MB size), the combiner function can
filter no data. The solution is to increase significantly the
size of input splits, e.g. more than 10 GB (1% of total).
However, using big splits is not advised since it decreases
significantly the MapReduce performance due to the fol-
lowing disadvantages: (1) more map-side skew: with big
splits, there may be some map tasks that take too much
time (e.g. because of their slow CPU), and this would
increase significantly the total MapReduce execution time;
(2) less parallelism: big split size means small number of
map tasks, so several nodes (or at least some of their
computing slots) may have nothing to do in the map
phase. In our example, with 10 GB splits, there will be only
100 map tasks, thus half of the nodes are idle. This per-
formance degradation is confirmed by our experimental
results reported in Section 5.11.

In this paper, we propose FP-Hadoop, a Hadoop-based
system that uses a novel approach for dealing with the
data skew in reduce side. In FP-Hadoop, there is a new
phase, called intermediate reduce (IR), whose objective is to
make the reduce side of MapReduce more parallel. More
specifically, the programmer replaces his reduce function
by two functions: intermediate reduce (IR) and final reduce
(FR) functions. Then, FP-Hadoop executes the job in three
phases, each phase corresponding to one of the functions:
map, intermediate reduce (IR) and final reduce (FR) pha-
ses. In the IR phase, even if all intermediate values belong
to only one key (i.e., the extreme case of skew), the
reducing work is done by using the computing power of all
available workers. Briefly, the data reducing in the IR phase
has the following distinguishing features:

® Parallel reducing of each key: The intermediate values of
each key can be processed in parallel by using multiple
intermediate reduce workers.

e Distributed intermediate block construction: The input of
each intermediate worker is a block composed of
intermediate values distributed over multiple nodes of
the system, and chosen using a scheduling strategy, e.g.
locality-aware.

® Hierarchical execution: The processing of intermediate
values in the IR phase can be done in several levels
(iterations). This permits to perform hierarchical execu-
tion plans for jobs such as top-k% queries, in order to
decrease the size of the intermediate data more
and more.

® Non-overwhelming reducing: The size of the inter-
mediate blocks is bounded by configurable maximum
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