
Declarative semantics of transactions in ORM

E.O. de Brock 1

University of Groningen, Faculty of Economics and Business, P.O. Box 800, 9700 AV Groningen, The Netherlands

a r t i c l e i n f o

Article history:
Received 6 March 2016
Accepted 10 March 2016
Available online 19 March 2016

Keywords:
Transaction modeling
Transaction language design
Semantics
Rollback
ORM-method
Transaction verbalization

a b s t r a c t

In order to specify databases completely at the conceptual level, conceptual database
specification languages should contain a data definition (sub)language (DDL), for speci-
fying data structures (þconstraints), a data retrieval (sub)language (DRL), for specifying
queries, as well as a (declarative) data manipulation (sub)language (DML), for specifying
transactions.

Object Role Modeling (ORM) is a powerful method for designing and querying data-
base models at the conceptual level. By means of verbalization the application is also
described in natural language as used by domain experts, for communication and vali-
dation purposes. ORM currently comprises a DDL and a DRL (ConQuer). However, the
ORM-method does not yet contain an expressive DML for specifying transactions at the
conceptual level.

In an earlier paper we designed a syntactic extension of the ORM-method with a
DML for specifying transactions at the conceptual level in a purely declarative way. For
all transactions we proposed syntaxes, verbalizations, and diagrams. However, we did
not give a formal semantics then.

The purpose of this paper is to add a clear, formal and purely declarative semantics to
the proposed ORM-transactions. The paper also formally defines rollbacks and illustrates
everything with examples (including a solution to a well-known transaction specifica-
tion problem). The extension of ORM with an expressive set of completely declaratively
specified transactions makes ORM complete as a database specification method at the
conceptual level.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In order to specify databases completely at the conceptual
level, conceptual database specification languages should
contain a data definition (sub)language (DDL), i.e., a part for
specifying data structures (þconstraints), a data retrieval (sub)
language (DRL), i.e., a part for specifying queries, as well as a
(declarative) data manipulation (sub)language (DML), i.e. a
part for specifying transactions.

In the well-known database language SQL for example,
the DDL typically contains CREATE-, DROP-, and ALTER-
statements, the DRL typically contains SELECT-statements,
and the DML typically contains INSERT-, DELETE-, and
UPDATE-statements (see e.g. [1]).

Object Role Modeling (ORM) is a powerful method for
designing and querying database models at the conceptual
level. By means of verbalization the application can also be
described in natural language which is easily understood
by non-technical users (e.g., domain experts). Verbaliza-
tion supports communication and validation with domain
experts and future users of the system to be developed.
Refs. [2] and [3] contain a lot of background information
about ORM. ORM is also extensively described in [4]. ORM

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

http://dx.doi.org/10.1016/j.is.2016.03.005
0306-4379/& 2016 Elsevier Ltd. All rights reserved.

E-mail address: E.O.de.Brock@rug.nl
1 Tel. þ31 50 3637315.

Information Systems 60 (2016) 85–94

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2016.03.005
http://dx.doi.org/10.1016/j.is.2016.03.005
http://dx.doi.org/10.1016/j.is.2016.03.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.03.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.03.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.03.005&domain=pdf
mailto:E.O.de.Brock@rug.nl
http://dx.doi.org/10.1016/j.is.2016.03.005


started as a DDL. Later on the language was extended with
a DRL, called ConQuer ([5,6]).

However, the ORM-method is incomplete in the sense
that it does not yet contain a good and sufficiently
expressive DML, for specifying and verbalizing transac-
tions at the conceptual level, e.g., in order to discuss
(standard, canned and complex) transactions with non-
technical users. In this paper we will solve this incom-
pleteness problem. One of our contributions is proposing
the right set of primitive transactions, including a clear
semantics.

When we look at the situation in comparable languages
such as ER and UML, we first note that the Entity-
Relationship (ER) conceptual modeling ([7]) does not
have any notion of transaction at all. The Unified Modeling
Language (UML, see [8]) does not have the notion of
database nor does it have the notion of database transac-
tion. The paper [18] tries to add transactions to UML-dia-
grams, but it leads to a restricted and cumbersome theory.
UML is not very well suited for database modeling anyway.
ORM provides a simpler, more accurate and more powerful
approach to information modeling at the conceptual level
than UML ([3,9,10]). Ref. [2] contains various articles
comparing UML and ORM.

The basic notion of a fact type in ORM is more or less
'comparable' to the notion of a class in UML, an entity type
(or relationship) in ER, and a table type in relational
database theory.

The operations add and del in [4] only apply to one fact
(instance) at a time. The operation add in [4] corresponds
to our addition of an instance, treated in Section 3. The
operation del in [4], removal of an instance, is a very
special case of the removal of a subset treated in Section 5.
However, only adding or deleting one particular fact at a
time is not enough (e.g., deleting all order lines belonging
to a given order is a natural counterexample). Moreover,
the operation del in [4] requires the complete fact to be
mentioned; e.g., with a fact type such as Employee earns
Salary (see the example in Section 6) a removal would look
like "del: Employee 123 earns Salary 4857". But maybe you
only want to say that the salary fact on Employee 123 has
to be removed; maybe you don't know the exact salary (or
maybe are not even allowed to know the salary).

Balsters et al. mention transactions in [11] and [12], but
actually they concentrate on dynamic rules, and do not
give a syntax for data manipulation operations as such. In
[11], adding actual operations to the ORM-language that
explicitly model transactions is mentioned as future work,
which it still is up to now. Our paper addresses this open
problem.

The ORM-situation sketched above is schematically
summarized below:

SQL ORM-approach

DDL: CREATE, DROP, ALTER þ(ORM's origin)
DRL: SELECT þ(ConQuer)
DML: INSERT, DELETE, UPDATE –

In [13] we proposed a syntactic extension of ORM with
a DML for specifying transactions at the conceptual level in
a purely declarative way, to be easily validated by domain
experts. By a transaction we informally mean an attempt to
update the contents of the database; the attempt fails
when any specified constraint will be violated (also known
as a rollback). We will call our DML ConTrans (for Con-
ceptual Transaction), analogous to ConQuer (which stands
for Conceptual Query).

In [13] we introduced a collection of four basic classes
of specifiable transactions: add a fact, add a query result,
remove a subset, and change a subset. We also introduced
compound transactions in ORM. Together they constitute
an expressive collection of transactions. Other conceptual
constructs are not needed.

In principle, a database treats only one transaction at a
time (except for compound transactions). We note how-
ever that the order of application of two transactions can
be semantically relevant: the transaction sequence T1; T2
(where the semicolon means ‘followed by’) can have
another end result than the transaction sequence T2; T1.
For instance, let T1 be the transaction to increase the sal-
ary of all employees living in London with 10% and T2 be
the transaction to increase the salary of all employees with
a salary less than 5000 with 100. Then the transaction
sequence T1; T2 implies that all Londoners with a salary
originally less than 4545 will earn 10% more plus an
additional 100 (i.e., 1.10*Old_Salaryþ100), while the
transaction sequence T2; T1 implies that all Londoners
with a salary originally less than 5000 will earn 10% more
plus an additional 110, namely 1.10*(Old_Salaryþ100).

Although one table (resp. one tuple) in a relational
database is directly associated to a set of fact types (resp.
facts) in ORM, it is a crucial decision in our theory that the
smallest unit of transaction is a fact, whereas in SQL it is a
tuple. Nevertheless a nice feature of the syntax (and
semantics) of transactions we propose for ORM at the
conceptual level is that it is similar to that of SQL, and that
other conceptual constructs were not necessary. The basic
transactions attempt to populate (add), de-populate
(remove) or re-populate (change) a fact type (or an inde-
pendent object type). An independent object type can be
considered as a fact type having only one role associated to
it. Recall that the attempt fails when any specified con-
straint will be violated. Each basic transaction will apply to
only one fact type (or one independent object type) at a
time. The proposal is inspired by (the expressiveness of)
the DML of SQL.

Because the ORM-tradition distinguishes several kinds
of specifications, in [13] we proposed for each transaction
a syntax (in a formal language), a verbalization (in natural
language, “fully communication oriented” [14]), and a
diagram (in a graphical language). A verbalization of a
transaction (i.e., in natural language) is intended for
communication and validation with domain experts and
future users.

E.O. de Brock / Information Systems 60 (2016) 85–9486



Download English Version:

https://daneshyari.com/en/article/396785

Download Persian Version:

https://daneshyari.com/article/396785

Daneshyari.com

https://daneshyari.com/en/article/396785
https://daneshyari.com/article/396785
https://daneshyari.com

