
Growing up with stability: How open-source relational
databases evolve

Ioannis Skoulis a,1, Panos Vassiliadis b,n, Apostolos V. Zarras b

a Opera, Helsinki, Finland
b University of Ioannina, Ioannina, Greece

a r t i c l e i n f o

Available online 30 April 2015

Keywords:
Schema evolution
Software evolution
Lehman's laws

a b s t r a c t

Like all software systems, databases are subject to evolution as time passes. The impact of
this evolution can be vast as a change to the schema of a database can affect the syntactic
correctness and the semantic validity of all the surrounding applications. In this paper, we
have performed a thorough, large-scale study on the evolution of databases that are part
of larger open source projects, publicly available through open source repositories.
Lehman's laws of software evolution, a well-established set of observations on how the
typical software systems evolve (matured during the last forty years), has served as our
guide towards providing insights on the mechanisms that govern schema evolution. Much
like software systems, we found that schemata expand over time, under a stabilization
mechanism that constraints uncontrolled expansion with perfective maintenance. At the
same time, unlike typical software systems, the growth is typically low, with long periods
of calmness interrupted by bursts of maintenance and a surprising lack of complexity
increase.

& 2015 Elsevier Ltd. All rights reserved.

A truly stable system expects the unexpected, is prepared
to be disrupted, waits to be transformed.Tom Robbins, Even
Cowgirls Get the Blues

1. Introduction

Software evolution is the change of a software system over
time, typically performed via a remarkably difficult, compli-
cated and time consuming process, software maintenance.
Schema evolution is the most important aspect of software
evolution that pertains to databases, as it can have a tremen-
dous impact to the entire information system built around the
evolving database, severely affecting both developers and
end-users. Quite frequently, development waits till a “schema

backbone” is stable and applications are build on top of it. This
is due to the “dependency magnet” nature of databases: a
change in the schema of a database may immediately drive
surrounding applications to crash (in case of deletions or
renamings) or be semantically defective or inaccurate (in the
case of information addition, or restructuring). Therefore,
discovering laws, patterns and regularities in schema evolu-
tion can result in great benefits, as wewould be able to design
databases with a view to their evolution and minimize the
impact of evolution to the surrounding applications: (a) by
avoiding “design anti-patterns” leading to cumulative com-
plexity for both the database and the surrounding applica-
tions and (b) by planning administration and maintenance
tasks and resources, instead of just responding to emer-
gencies.

In sharp distinction to traditional software systems, and
disproportionately to the severity of its implications, database
evolution has hardly been studied throughout the entire
lifetime of the data management discipline. It is only amazing

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

http://dx.doi.org/10.1016/j.is.2015.03.009
0306-4379/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: giskou@gmail.com (I. Skoulis),

pvassil@cs.uoi.gr (P. Vassiliadis), zarras@cs.uoi.gr (A.V. Zarras).
1 Work conducted while in the University of Ioannina.

Information Systems 53 (2015) 363–385

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2015.03.009
http://dx.doi.org/10.1016/j.is.2015.03.009
http://dx.doi.org/10.1016/j.is.2015.03.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.03.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.03.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.03.009&domain=pdf
mailto:giskou@gmail.com
mailto:pvassil@cs.uoi.gr
mailto:zarras@cs.uoi.gr
http://dx.doi.org/10.1016/j.is.2015.03.009


to find out that, in the history of the discipline, just a handful
of studies had been published in the area. The deficit is really
amazing in the case of traditional database environments,
where only two(!) studies [1,2] have been published. Apart
from amazing, this deficit should also be expected: allowing
the monitoring, study and eventual publication of the evolu-
tion properties of a database would expose the internals of a
critical part of the core of an organization's information syst-
em. Fortunately, the open-source movement has provided us
with the possibility to slightly change this landscape. As public
repositories (git, svn, etc.) keep the entire history of revisions
of software projects, including the schema files of any
database internally hosted within them, we are now pre-
sented with the opportunity to study the version histories of
such open source databases. Hence, within only a few years in
the late ‘00's, several research efforts [3–6] have studied of
schema evolution in open source environments. Those stu-
dies, however, focus on the statistical properties of the
evolution and do not provide details on the mechanism that
governs the evolution of database schemata.

To contribute towards amending this deficit, the research
goal of this paper involves the identification of patterns and
regularities of schema evolution that can help us understand the
underlying mechanism that governs it. To this end, we study the
evolution of the logical schema of eight databases, that are
parts of publicly available, open-source software projects
(Section 3). We have collected and cleansed the available
versions of the database schemata for the eight case studies,
extracted the changes that have been performed in these
versions and, finally, we have come up with usable datasets
that we subsequently analyzed.

Our main tool for this analysis came from the area of
software engineering. In an attempt to understand the
mechanics behind the evolution of software and facilitate
a smoother, lest disruptive maintenance process, Meir
Lehman and his colleagues introduced a set of rules in
mid seventies [7], also known as the Laws on Software
Evolution (Section 2). Their findings, that were reviewed
and enhanced for nearly 40 years [8,9], have, since then,
given an insight to managers, software developers and
researchers, as to what evolves in the lifetime of a software
system, and why it does so. Other studies (see [10] for a
survey) have complemented these insights in this field,
typically with particular focus to open-source software
projects. In our case, we adapted the laws of software
evolution to the case of schema evolution and utilized
them as a driver towards understanding how the studied
schemata evolve. Our findings (Section 4) indicate that the
schemata of open source databases expand over time, with
long periods of calmness connected via bursts of main-
tenance effort focused in time, and with significant effort
towards the perfective maintenance of the schema that
appears to result in an unexpected lack of complexity
increase. Incremental growth of the schema is typically
low and its volume follows a Zipfian distribution. In both
the presentations of our results and in our concluding
notes (Section 5) we also demonstrate that although the
technical assessment of Lehman's laws shows that the
typical software systems evolve quite differently than
database schemata, the essence of the laws is preserved:
evolution is not about uncontrolled expansion; on the

contrary, there appears to be a stabilization mechanism
that employs perfective maintenance to control the other-
wise growing trend of increase in the information capacity
of the database.

Roadmap: In Section 2, we summarize Lehman's laws
for the non-expert reader and survey related efforts, too. In
Section 3 we discuss the experimental setup of this study
and in Section 4, we detail our findings. We conclude our
deliberations with a summary of our findings and their
implications in Section 5.

2. Lehman laws of software evolution in a nutshell

Meir M. Lehman and his colleagues, have introduced,
and subsequently amended, enriched, and corrected a set
of rules on the behavior of software as it evolves over time
[7–9]. Lehman's laws focus on E-type systems that concern
“software solving a problem or addressing an application
in the real-world” [8]. The main idea behind the laws of
evolution for E-type software systems is that their evolu-
tion is a process that follows the behavior of a feedback-based
system. Being a feedback-based system, the evolution
process has to balance (a) positive feedback, i.e., the need
to adapt to a changing environment and grow to address
the need for more functionality, and, (b) negative feedback,
i.e., the need to control, constrain and direct change in
ways that prevent the deterioration of the maintainability
and manageability of the software. In the sequel, we list
the definitions of the laws as they are presented in [9], in a
more abstract form than previous versions and with the
benefit of retrospect, after thirty years of maturity and
research findings.

(I) Law of Continuing Change: An E-type system
must be continually adapted or else it becomes
progressively less satisfactory in use.

(II) Law of Increasing Complexity: As an E-type sys-
tem is changed its complexity increases and
becomes more difficult to evolve unless work is
done to maintain or reduce the complexity.

(III) Law of Self-regulation: Global E-type system evo-
lution is feedback regulated.

(IV) Law of Conservation of Organizational Stability:
The work rate of an organization evolving an E-
type software system tends to be constant over
the operational lifetime of that system or phases
of that lifetime.

(V) Law of Conservation of Familiarity: In general, the
incremental growth (growth ratio trend) of E-
type systems is constrained by the need to
maintain familiarity.

(VI) Law of Continuing Growth: The functional cap-
ability of E-type systems must be continually
enhanced to maintain user satisfaction over
system lifetime.

(VII) Law of Declining Quality: Unless rigorously
adapted and evolved to take into account
changes in the operational environment, the
quality of an E-type system will appear to be
declining.

I. Skoulis et al. / Information Systems 53 (2015) 363–385364



Download	English	Version:

https://daneshyari.com/en/article/396817

Download	Persian	Version:

https://daneshyari.com/article/396817

Daneshyari.com

https://daneshyari.com/en/article/396817
https://daneshyari.com/article/396817
https://daneshyari.com/

