Available online at www.sciencedirect.com l

ScienceDirect

E?a

x. 375
ELSEVIER Information Systems 32 (2007) 1073—1100

www.elsevier.com/locate/infosys

Fast computation of spatial selections and joins
using graphics hardware ™

Nagender Bandi®*, Chengyu Sun®, Divyakant Agrawal®, Amr El Abbadi®

#University of California, Santa Barbara, USA
®California State University, Los Angeles, USA

Received 11 April 2006; accepted 5 December 2006
Recommended by Dr. K.A. Ross

Abstract

Spatial database operations are typically performed in two steps. In the filtering step, indexes and the minimum
bounding rectangles (MBRs) of the objects are used to quickly determine a set of candidate objects. In the refinement step,
the actual geometries of the objects are retrieved and compared to the query geometry or each other. Because of the
complexity of the computational geometry algorithms involved, the CPU cost of the refinement step is usually the
dominant cost of the operation for complex geometries such as polygons. Although many run-time and pre-processing-
based heuristics have been proposed to alleviate this problem, the CPU cost still remains the bottleneck. In this paper, we
propose a novel approach to address this problem using the efficient rendering and searching capabilities of modern
graphics hardware. This approach does not require expensive pre-processing of the data or changes to existing storage and
index structures, and is applicable to both intersection and distance predicates. We evaluate this approach by comparing
the performance with leading software solutions. The results show that by combining hardware and software methods, the
overall computational cost can be reduced substantially for both spatial selections and joins. We integrated this hardware/
software co-processing technique into a popular database to evaluate its performance in the presence of indexes, pre-
processing and other proprietary optimizations. Extensive experimentation with real-world data sets show that the
hardware-accelerated technique not only outperforms the run-time software solutions but also performs as well if not
better than pre-processing-assisted techniques.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Databases; Geographic information systems; Query optimization

1. Introduction

" Earlier versions of this work appeared as “Hardware
Acceleration for Spatial Selections and Joins” in the 29th
International Conference of Management of Data, SIGMOD
2003 and “Hardware Acceleration in Commercial Databases: A
Case Study of Spatial Operations” in the 30th International
Conference on Very Large Databases, VLDB 2004.

*Corresponding author. Tel.: + 18054235042.

E-mail address: nagender_iitg@yahoo.com (N. Bandi).

0306-4379/$ - see front matter © 2007 Elsevier B.V. All rights reserved.

doi:10.1016/].15.2006.12.001

Spatial databases are commonly used in applica-
tions such as geographical information systems
(GIS) and computer-aided design (CAD) systems.
The data stored in spatial databases are spatial
objects such as locations, road segments, and
geographical regions, which can be abstracted as
geometries such as points, polylines, and polygons

www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2006.12.001
mailto:nagender_iitg@yahoo.com

1074

451

45.05

45

Longitude

44.95

44.9

111

-110.8 -110.6 -110.4

Latitude

-110.2 -110

b

Longitude

. Bandi et al. | Information Systems 32 (2007) 1073-1100

45.1 ‘ ‘ ‘ ‘ ‘ ‘ 7
\(_/
T T I

45

444.9
444.8
447

44.6

L,

-106 -105

445 “
111 -110

-109 -108 -107

Latitude

Fig. 1. Sample objects from two data sets: (a) LANDC and (b) LANDO.

in a 2D or 3D coordinate system. Some of the most
commonly asked spatial queries are the polygon
intersection and the polygon within-distance
queries. In a polygon intersection query, given a
data set of 2D or 3D polygons and a query polygon,
we are interested in finding all the data polygons
which intersect with the given query polygon.
Similarly, in the case of within-distance queries,
we are interested in all the data set polygons which
lie within a certain distance from the given polygon.

Spatial database queries are typically evaluated in
two steps: the filtering step and the refinement step.
In the filtering step, the minimal bounding rectan-
gles (MBRs) of the objects and spatial indexes such
as R-tree [1] are used to quickly determine a set of
candidate results. In the refinement step, the final
results are determined by retrieving the actual
geometries of the candidates from the database,
and comparing them to either a query geometry or
to each other. For complex geometries such as
polygons, the cost of the refinement step usually
dominates the query cost due to the complexity of
the underlying computational geometry algorithms.

The cost of the refinement step consists of two
factors: the I/O cost of loading the geometries from
disk to main memory, and the computational cost of
geometry—geometry comparison. The ratio of the
computational cost over the I/O cost varies sig-
nificantly depending on the types of spatial queries
and the complexity of the geometries, which can be
roughly characterized by the number of vertexes of
a geometry. Generally speaking, the more complex
the data, the more significant the computational
cost. For instance, a study on spatial selections [2]

shows that for point geometries, the I/O cost is the
dominant factor, but for polygon geometries, both
costs are significant. In the case of a spatial join, the
computational cost could be orders of magnitude
higher than the I/O cost, because once a geometry is
loaded, it is buffered in the main memory and
compared to many other geometries.

The high computational cost of the spatial
operations comes from the complexity of the data
in the real world, where it is not uncommon that a
polygon has tens of thousands of vertexes. Further-
more, the shapes of the polygons can be arbitrarily
complex, as can be seen from Fig. 1, which shows
the first 100 polygons in the Wyoming land cover
data set (LANDC) and the Wyoming land owner-
ship data set (LANDO). In many cases, the
polygons are concave, and sometimes, even non-
simple.! Processing these types of polygons is very
expensive. For instance, assuming the number of
vertexes of two polygons are n and m, the complex-
ity of the commonly used intersection test algorithm
is (O((n+ m)log(n +m))) [3], and the distance
calculation algorithm is even more expensive with
O(n x m) worst case complexity [4]. Since the 1/O
cost remains linear, the computational cost quickly
outweighs the I/O cost as the data complexity
increases.

Over the last decade, much effort has been
directed to improving spatial query processing for
complex geometries. For intersection queries,

"Non-simple polygons are polygons with self-intersecting edges
or with vertexes that have degrees greater than 2 (more than 2
edges incident to a vertex).

Download English Version:

https://daneshyari.com/en/article/396820

Download Persian Version:

https://daneshyari.com/article/396820

Daneshyari.com

https://daneshyari.com/en/article/396820
https://daneshyari.com/article/396820
https://daneshyari.com

