
Information Systems 32 (2007) 773–792

An automated entity–relationship clustering algorithm
for conceptual database design

Madjid Tavanaa,�, Prafulla Joglekara, Michael A. Redmondb

aManagement Department, La Salle University, Philadelphia, PA 19141, USA
bDepartment of Mathematics and Computer Science, La Salle University, Philadelphia, PA 19141, USA

Received 31 December 2005; received in revised form 6 July 2006; accepted 11 July 2006

Recommended by F. Carino Jr.

Abstract

Entity–relationship (ER) modeling is a widely accepted technique for conceptual database design. However, the

complexities inherent in large ER diagrams have restricted the effectiveness of their use in practice. It is often difficult for

end-users, or even for well-trained database engineers and designers, to fully understand and properly manage large ER

diagrams. Hence, to improve their understandability and manageability, large ER diagrams need to be decomposed into

smaller modules by clustering closely related entities and relationships. Previous researchers have proposed many manual

and semi-automatic approaches for such clustering. However, most of them call for intuitive and subjective judgment from

‘‘experts’’ at various stages of their implementation. We present a fully automated algorithm that eliminates the need for

subjective human judgment. In addition to improving their understandability and manageability, an automated algorithm

facilitates the re-clustering of ER diagrams as they undergo many changes during their design, development, and

maintenance phases.

The validation methodology used in this study considers a set of both objective and subjective criteria for comparison.

We adopted several concepts and metrics from machine-part clustering in cellular manufacturing (CM) while exploiting

some of the characteristics of ER diagrams that are different from typical CM situations. Our algorithm uses well

established criteria for good ER clustering solutions. These criteria were also validated by a group of expert database

engineers and designers at NASA. An objective assessment of sample problems shows that our algorithm produces

solutions with a higher degree of modularity and better goodness of fit compared with solutions produced by two

commonly used alternative algorithms. A subjective assessment of sample problems by our expert database engineers and

designers also found our solutions preferable to those produced by the two alternative algorithms.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Computers; Databases; Information systems; Analysis and designs; Planning; Decision analysis

1. Introduction

Entity–relationship (ER) modeling [1] is a popu-
lar and effective methodology used to construct a
conceptual data model. An ER diagram (ERD)
is a detailed graphical representation of the data

ARTICLE IN PRESS

www.elsevier.com/locate/infosys

0306-4379/$ - see front matter r 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.is.2006.07.001

�Corresponding author. Tel.: +1215 951 1129;

fax: +1267 295 2854.

E-mail addresses: tavana@lasalle.edu (M. Tavana),

joglekar@lasalle.edu (P. Joglekar), redmond@lasalle.edu

(M.A. Redmond).

URL: http://lasalle.edu/�tavana.

www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2006.07.001
mailto:tavana@lasalle.edu
mailto:joglekar@lasalle.edu
mailto:redmond@lasalle.edu
mailto:redmond@lasalle.edu
mailto:http://lasalle.edu/~tavana.3d
mailto:http://lasalle.edu/~tavana.3d


requirements in an organization or business unit.
ERDs enhance understanding of the system and
improve communication among database engineers,
designers, and end-users.

Consider the following business scenario docu-
mented during systems analysis for the development
of an information system for a retailer of custom-
made products:

A customer issues a purchase order to the vendor

(retailer) to buy a product. The purchase order
consists of an order item. When the product is
delivered, the customer is given a receipt for the
product. Because the customer has a line of credit,
the actual payment is deferred until later. In the
next billing cycle, the vendor issues an invoice that
includes an invoice item related to the order item

on the purchase order. Upon receiving the invoice,
the customer makes sales payment against the
receipt of the product and the vendor receives
vendor payment for the invoice.

This scenario results in the identification of the
entities and relationships presented in a clustered
ERD presented in Fig. 1a. Entities are represented
by rectangles, relationships by diamond-shaped
boxes, and connecting lines show which entities
participate in which relationship [1]. For example,
the fact that a customer (Entity A) buys a product
(Entity D) is represented by the ‘‘buy’’ relationship
(Relationship 1). Knowledgeable end-users can
comprehend and validate the database design
implied by an ERD against actual business prac-
tices. Once finalized, an ERD serves as the blueprint
for database implementation.

The ER model has become so common in
database design that today a number of commercial
ER diagraming tools are available (e.g. ERWin by
Computer Associates, EasyER by Visible Systems,
Visio by Microsoft, and ER/1 by Embarcadero). ER
tools differ somewhat in their terminology and
notation. However, the basic concepts are the same
and all ER tools represent data requirements
graphically. Several tools generate the code needed
for the database schema, including the necessary
tables, indexes, triggers, and stored procedures.
Most ER tools support systems analysis and
database design, implementation, and maintenance.

Yet, today ER tools fall short of their true
potential. This is because ER diagrams are rarely as
small as the one presented in Fig. 1a. A typical
application data model consists of 95 entities and an
average enterprise model consists of 536 entities [2].

Feldman and Miller [3] suggest that diagrams
involving 30 or more entities exceed the limits of
easy comprehension, and communications. To
improve their understandability and manageability,
large ER diagrams need to be decomposed into
smaller modules by clustering closely related entities
and relationships.

The ERD in Fig. 1a is small enough to
comprehend without any decomposition. However,
the three clusters (retailer’s ‘‘sales,’’ ‘‘accounts
receivable,’’ and ‘‘accounts payable’’ subsystems)
identified by our algorithm illustrate some of the
advantages of decomposing ERDs. The literature
on clustering [3–6] has identified several advantages
of ERD decomposition. Clustered ER diagrams:

1. Are easier to develop and maintain, since they
are more modular;

2. Are easier to document, since clusters are smaller
and easier to understand;

3. Are easier to validate, since they provide better
organization;

4. Can assist project management by allowing
allocation of modular tasks to individuals or
teams; and

5. Can assist identification of reusable subsystems
that can be added, removed, or modified
relatively independently of one another.

In spite of these advantages, today no ER
diagramming tool offers any clustering assistance.
This is mainly because the available ER clustering
algorithms call for intuitive and subjective judgment
from ‘‘experts’’ at various stages of their implemen-
tation (see Section 2). ER tools support data model
construction, communication, and validation by
storing all the entities, relationships, relevant
assumptions, and constraints in a repository. Using
the repository, multiple conceptual and physical-
level ERD ‘‘views’’ can be produced for specific
purposes such as end-user communication, database
design, and development by presenting only rele-
vant portions of the larger design to specific
audiences. Users often prefer such views. As such,
we do not want to suggest that clustered diagrams
would replace functional views of a database.

However, sometimes even these views are too
large for adequate comprehension. More impor-
tantly, because specific entities and relationships are
often duplicated in several views, the ‘‘views’’ do not
offer some of the advantages of a clustered ERD.
For example, in allocating responsibility for the

ARTICLE IN PRESS
M. Tavana et al. / Information Systems 32 (2007) 773–792774



Download English Version:

https://daneshyari.com/en/article/396841

Download Persian Version:

https://daneshyari.com/article/396841

Daneshyari.com

https://daneshyari.com/en/article/396841
https://daneshyari.com/article/396841
https://daneshyari.com

