
Information Systems 32 (2007) 344–364

Schema-conscious XML indexing

Krishna P. Leela1, Jayant R. Haritsa�

Database Systems Lab, SERC/CSA, Indian Institute of Science, Bangalore 560012, India

Received 4 May 2003; received in revised form 31 October 2005; accepted 31 October 2005

Recommended by Y. Ioannidis

Abstract

User queries on extensible markup language (XML) documents are typically expressed as regular path expressions. A

variety of indexing techniques for efficiently retrieving the results to such queries have been proposed in the recent

literature. While these techniques are applicable to documents that are completely schema-less, in practice XML

documents often adhere to a schema, such as a document type descriptor (DTD). In this paper, we propose schema-

conscious path-hierarchy indexing of XML (SphinX), a new XML indexing scheme that utilizes the schema to significantly

enhance the search process. SphinX implements a persistent index structure that seamlessly combines the schema

information with standard B-tree technology, resulting in a simple and scalable solution. A performance evaluation over a

variety of XML documents, including the Xmark benchmark, indicates significant benefits with regard to both index

construction and index access.

r 2005 Elsevier B.V. All rights reserved.

Keywords: XML; Index; DTD; B-tree

1. Introduction

Extensible markup language (XML) [1], by virtue
of its self-describing and textual nature, has become
extremely popular as a flexible medium of data
exchange and storage, especially on the Internet.
Correspondingly, there has been significant research
activity, in both academia and industry, on the
development of languages for specification of user
queries on XML document repositories. Many query
languages have been proposed in the literature,
including Lorel [2], XML-QL [3], XPath [4], etc. from

which XQuery [5] has emerged as the standard. These
proposals have significant differences in their syntax
and formulation, but at their core, they all support
regular path expressions (RPEs), an elegant and
powerful mechanism for specifying traversal of
graph-based data such as XML. For example, the
RPE /bib[//bookjarticle]/author/lastname specifies (in
XPath syntax) the retrieval of the lastnames of all
authors of books or articles that are reachable from
the bib root element.2

In order to process RPE queries efficiently, a
variety of XML indexing techniques have been

ARTICLE IN PRESS

www.elsevier.com/locate/infosys

0306-4379/$ - see front matter r 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.is.2005.10.002

�Corresponding author.

E-mail addresses: krishna@yahoo-inc.com (K.P. Leela),

haritsa@dsl.serc.iisc.ernet.in (J.R. Haritsa).
1Currently with Yahoo! India.

2The standard output of XPath expressions is ‘‘node-sets’’ (i.e.

a set of node-ids); however, since our focus is on XPath queries,

we assume that the expected output is the actual data (i.e. the sub-

trees) associated with the result nodes.

www.elsevier.com/locate/infosys


proposed in the literature. These techniques include
the classical Lore [6] and T-index [7], as well as more
recent followups such as ToXin [8], XISS [9], Index
Fabric [10], APEX [11], F&B-Index [12], Holistic
Twig Joins [13], Barashev and Novikov [14] and
ViST [15]. The methodology of the majority of these
techniques is to first construct a graph-based
equivalent of the original XML document, and
then to create indexes on this graph representation.

We move on in this paper to considering
situations where the XML document that is to be
indexed additionally conforms to a schema, such as
a Document Type Descriptor (DTD) [16]. Such
situations are quite common in practice—for
example, BioML [17] and MathML [18] are DTDs
specified for information exchange by the genomics
and mathematics communities, respectively. XML
schemas have been used in the prior literature
for deriving relational database schemas [19,20], for
query pruning [21] and minimization [22], for
gathering document statistics [23], etc. However,
using schema information to enhance indexing

efficiency has not been considered before to the
best of our knowledge.3

1.1. The SphinX index

We propose here a new indexing mechanism,
called SphinX (schema-conscious path-hierarchy
indexing of XML), intended for schema-conforming
XML documents. While SphinX can, in principle,
be used with any kind of schema (e.g. XML Schema
[25]), including those derived post-facto from the
data (e.g. Data Guide [6]), in this paper we focus
specifically on DTDs, which are an extremely
popular and common schema representation in
real-world applications.

Given an XML document and its associated
DTD, stored either on a file system or native XML
engine,4 SphinX proceeds as follows: the document
is first converted into its equivalent graph represen-
tation, called the document graph. A special feature
is that this graph is created with bi-directional links

in order to facilitate both top-down and bottom-up
traversal of the graph. Then, the DTD is also
converted into a graph-based representation, called
the schema graph. The leaves of the schema graph
contain, for all the paths in the document on which
indexes have been built, pointers to the roots of
Bþ-trees (hereafter simply referred to as B-trees).
Each B-tree indexes directly into the corresponding
atomic values in the document graph. A pictorial
overview of the SphinX system is shown in Fig. 1.

A crucial point to note here is that although the
native XML documents may be highly complex and
large in size, their associated DTDs are very
compactly described through the use of regular
expressions. For example, the DTD for Xmark, the
popular XML benchmark [26], is less than 5 kB in
size. This compactness is also captured in our
schema graph representation of the DTD—the
schema graph takes up only about 50 kB. This
means that it can be reasonably assumed that
although the schema graph is a persistent structure,
it can always be loaded in its entirety into memory.

The schema graph supports the efficient determi-
nation of exactly those paths in the document graph
that are relevant to a given query—this feature is
extremely important since path identification forms
the basis of answering RPE queries. That is, the
schema graph ensures the selection of only the
relevant paths making it both ‘‘precise’’ and
‘‘complete’’. In contrast, indexing techniques on
schema-less documents require, from a candidate set
of paths, the explicit evaluation and subsequent
rejection of paths not relevant to the query (i.e.
elimination of ‘‘false-positives’’). The rejection
process may require arbitrarily long traversals
of the document graph, which is typically a large

ARTICLE IN PRESS

B-trees

Document Graph

Document DTD

Schema Graph

XML Document

Fig. 1. Overview of SphinX system.

3Industrial products such as Tamino [24] and eXcelon [37] do

use schemas for a variety of purposes, including determining the

storage of XML objects and specifying the indexing properties of

individual elements and attributes, but not for supporting

indexing per se (personal communication with the technical

personnel of these products).
4When XML documents are stored on RDBMS backends (e.g.

[19,20]), the standard indexing mechanisms of relational engines

have to be used.

K.P. Leela, J.R. Haritsa / Information Systems 32 (2007) 344–364 345



Download English Version:

https://daneshyari.com/en/article/396860

Download Persian Version:

https://daneshyari.com/article/396860

Daneshyari.com

https://daneshyari.com/en/article/396860
https://daneshyari.com/article/396860
https://daneshyari.com

